论文标题

使用细胞内微管网络的显微镜图像对细胞分类的深度学习

Deep Learning of Cell Classification using Microscope Images of Intracellular Microtubule Networks

论文作者

Shpilman, Aleksei, Boikiy, Dmitry, Polyakova, Marina, Kudenko, Daniel, Burakov, Anton, Nadezhdina, Elena

论文摘要

微管网络(MTS)是细胞的一个组成部分,可能表明存在各种化合物,可用于识别诸如治疗耐药性之类的特性。因此,MT图像的分类与细胞诊断非常相关。人类专家发现,很难识别细胞的化学复合暴露水平。通过自动化技术提高准确性将对细胞疗法产生重大影响。在本文中,我们介绍了深度学习在MT图像分类中的应用,并将其在具有三个化学剂的三个程度的动物细胞的大型MT图像数据集上进行评估。结果表明,与人类专家相比,学到的深网在相应的细胞分类任务上的表现或更好。具体而言,我们表明,与人类专家相比,神经网络识别不同水平的化学剂暴露的任务可以明显更好地处理。

Microtubule networks (MTs) are a component of a cell that may indicate the presence of various chemical compounds and can be used to recognize properties such as treatment resistance. Therefore, the classification of MT images is of great relevance for cell diagnostics. Human experts find it particularly difficult to recognize the levels of chemical compound exposure of a cell. Improving the accuracy with automated techniques would have a significant impact on cell therapy. In this paper we present the application of Deep Learning to MT image classification and evaluate it on a large MT image dataset of animal cells with three degrees of exposure to a chemical agent. The results demonstrate that the learned deep network performs on par or better at the corresponding cell classification task than human experts. Specifically, we show that the task of recognizing different levels of chemical agent exposure can be handled significantly better by the neural network than by human experts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源