论文标题
有限价值的命题动态逻辑
Finitely-valued propositional dynamic logic
论文作者
论文摘要
我们研究了命题动态逻辑的多个值得概括的概括,其中在有限的FL-Algebra中评估了Kripke模型状态之间的公式以及Kripke模型状态之间的可访问性关系。该框架的一种自然解释与关于执行结构化行动成本的推理有关。我们证明,在任何有限的fl-algebra上的PDL都是可决定的。我们还基于具有规范常数的交换性积分fl-algebras建立了一类PDL的一般完整性结果。
We study a many-valued generalization of Propositional Dynamic Logic where formulas in states and accessibility relations between states of a Kripke model are evaluated in a finite FL-algebra. One natural interpretation of this framework is related to reasoning about costs of performing structured actions. We prove that PDL over any finite FL-algebra is decidable. We also establish a general completeness result for a class of PDLs based on commutative integral FL-algebras with canonical constants.