论文标题

在外部部队和约束下,有缺陷的石墨烯纳米纤维中高度可调的电荷传输:一项混合计算研究

Highly tunable charge transport in defective graphene nanoribbons under external local forces and constraints: A hybrid computational study

论文作者

Rostami, Mahnoosh, Ahmadi, Isa, Khoeini, Farhad

论文摘要

在本文中,我们提出了分子力学(MM)和紧密结合(TB)方法的组合建模,这使我们能够研究诸如外部局部力量,约束和空位缺陷等因素对纳米材料电子传输特性等因素的影响。在这项工作中选择的纳米结构是扶手椅石墨烯纳米容器(AGNRS)。根据这种方法,将纳米结构建模为框架,并应用梁元素用于说明键中的共价性原子相互作用。在我们的计算中,考虑了扭转,拉伸和弯曲能的术语。选定的原始纳米替宾是一种金属,本研究的目的是找到机械负载,空缺缺陷及其位置对结构电导的影响。我们观察到结构中空置缺陷的存在导致能量隙的打开,这将纳米结构的相改变从金属变为半导体。我们发现,随着点缺陷的数量增加,紧张系统的能量差距的大小会增长。此外,增加局部力量的大小会降低电导率和系统的能量间隙。通过更改参数,例如点缺陷的数量和局部力量,可以控制系统的传输缝隙。这项研究的结果可能在纳米机电系统的设计中很有用。

In this paper, we propose a combined modeling of molecular mechanics (MM) and the tight-binding (TB) approach, which enables us to study the effect of factors such as external local forces, constraints, and vacancy defects on electronic transport properties of nanomaterials. Nanostructures selected in this work are armchair graphene nanoribbons (AGNRs). According to this method, the nanostructure is modeled as a frame, and the beam element is applied for illustrating the covalent interatomic interactions in bonds. In our calculations, the terms of torsional, stretching, and bending energies are considered. The selected pristine nanoribbon is a metal, and the purpose of this study is to find the effects of mechanical loading, the vacancy defects and their positions on the electrical conductance of the structure. We observe that the presence of vacancy defects in the structure leads to the opening of an energy gap, which changes the phase of the nanostructure from metal to the semiconductor. We find that with increasing the number of point defects, the energy gap size of the strained system grows. Besides, increasing the magnitude of the local force reduces the conductance, and the energy gap of the system. By changing parameters such as the number of point defects and magnitude local forces, the transport gap of the system can be controlled. The results of this research may be useful in the design of nanoelectromechanical systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源