论文标题
(3+1) - 扭转和非金属的重力形成:应力 - 能量摩托仪方程
(3+1)-Formulation for Gravity with Torsion and Non-Metricity: The Stress-Energy-Momentum Equation
论文作者
论文摘要
我们得出了广义的高斯 - 库达·梅纳迪(GCM)方程,以与扭转和非金属级的一般仿射联系。此外,我们表明,歧管上连接的度量兼容性和无扭转条件遗传到其超曲面的连接。作为这些结果的物理应用,我们为特殊情况的公制f(r) - 重力(f(r)= r(公制的属于度疗法的一般相对论(MAGR))得出(3+1)-Einstein场方程(EFE)。受到几何动力学的概念的促进,由于非变化的扭转和非中型性,我们引入了有关超表面的其他变量。使用这些其他变量,我们表明,对于MAGR,EFE的能量,动量和应力 - 能量部分都是动态的,即,所有这些都包含相对于时间坐标的数量的导数。对于Levi-Civita连接,可以恢复哈密顿量和动量(差异)约束,并获得GR的标准动力学。
We derive the generalized Gauss-Codazzi-Mainardi (GCM) equation for a general affine connection with torsion and non-metricity. Moreover, we show that the metric compatibility and torsionless condition of a connection on a manifold are inherited to the connection of its hypersurface. As a physical application to these results, we derive the (3+1)-Einstein Field Equation (EFE) for a special case of Metric-Affine f(R)-gravity when f(R)=R, the Metric-Affine General Relativity (MAGR). Motivated by the concept of geometrodynamics, we introduce additional variables on the hypersurface as a consequence of non-vanishing torsion and non-metricity. With these additional variables, we show that for MAGR, the energy, momentum, and the stress-energy part of the EFE are dynamical, i.e., all of them contain the derivative of a quantity with respect to the time coordinate. For the Levi-Civita connection, one could recover the Hamiltonian and the momentum (diffeomorphism) constraint, and obtain the standard dynamics of GR.