论文标题

标态曲率分裂I:最小因素

Scalar Curvature Splittings I: Minimal Factors

论文作者

Lohkamp, Joachim

论文摘要

可以通过分裂程序研究标态曲率约束。该策略的成功取决于我们可以控制其分裂因素的控制。我们引入了规范所谓的最小分裂因子。它们具有正标性曲率,而其他特性非常类似于最小化超曲面的区域。这包括Poincare,Sobolev和Isoperimetric不平等的存在以及奇异点允许切线锥的事实,但现在具有积极的标态曲率。

Scalar curvature constraints can be studied by means of splitting procedures. The success of this strategy depends on the control we can get on its splitting factors. We introduce canonical so-called minimal splitting factors. They have positive scalar curvature while other properties strongly resemble those of area minimizing hypersurfaces. This includes the presence of Poincare, Sobolev and isoperimetric inequalities and the fact that singular points admit tangent cones but now with positive scalar curvature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源