论文标题

二维椭圆方程的规律性和有限元近似,带有线dirac源

Regularity and finite element approximation for two-dimensional elliptic equations with line Dirac sources

论文作者

Li, Hengguang, Wan, Xiang, Yin, Peimeng, Zhao, Lewei

论文摘要

我们研究具有二维域中dirichlet边界条件的源术语的椭圆方程。这样的线dirac测量导致线断裂附近的不同类型的溶液奇异性。我们在一类加权Sobolev空间中为解决方案建立了新的规律性结果,并提出了有限元算法,该算法以最佳收敛速率近似于单数溶液。提出了数值测试以证明理论发现是合理的。

We study the elliptic equation with a line Dirac delta function as the source term subject to the Dirichlet boundary condition in a two-dimensional domain. Such a line Dirac measure causes different types of solution singularities in the neighborhood of the line fracture. We establish new regularity results for the solution in a class of weighted Sobolev spaces and propose finite element algorithms that approximate the singular solution at the optimal convergence rate. Numerical tests are presented to justify the theoretical findings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源