论文标题
rashba效应和拉曼光谱tl $ _2 $ o/pts $ _2 $异构结构
Rashba Effect and Raman Spectra of Tl$_2$O/PtS$_2$ Heterostructure
论文作者
论文摘要
通过Rashba旋转轨道效应实现电荷到旋转转换的可能性为开发纳米级旋转的可能性提供了刺激的机会。在这里,我们使用第一原理计算来研究tl $ _2 $ o/pts $ _2 $异质结构的电子和自旋特性,为此,我们通过其正声子频率确认了动态稳定性。每个单位电池的出乎意料的高结合能为-0.38 eV,描绘了TL $ _2 $ O和PTS $ _2 $之间的强层间相互作用。有趣的是,我们发现Rashba Spin-Splitting(具有$ $α_r$值)在Tl $ _2 $ o的价带中,源自PTS $ _2 $引起的界面自旋轨效应。已经使用电子定位函数和原子轨道投影研究了范德华结合在轨道重排上的作用,这详细说明了费米水平附近的电子色散。此外,我们解释了动量空间中独特的频带结构对齐,但是在TL $ _2 $ o/pts $ _2 $异质结构的真实空间中的分离。由于2D TL $ _2 $ O仍在等待实验确认,因此我们首次计算了原始TL $ _2 $ O和TL $ _2 $ o/pts $ _2 $ heterostructure的拉曼光谱,并讨论与Atoms振动模式相关的峰值位置。这些发现为通过2D异质结构探索潜在的Spintronics应用的旋转物理学提供了有希望的途径。
The possibility to achieve charge-to-spin conversion via Rashba spin-orbit effects provide stimulating opportunities toward the development of nanoscale spintronics. Here we use first-principles calculations to study the electronic and spintronic properties of Tl$_2$O/PtS$_2$ heterostructure, for which we have confirmed the dynamical stability by its positive phonon frequencies. An unexpectedly high binding energy of -0.38 eV per unit cell depicts strong interlayer interactions between Tl$_2$O and PtS$_2$. Interestingly, we discover Rashba spin-splitting's (with large $α_R$ value) in the valence band of Tl$_2$O stemming from interfacial spin-orbit effects caused by PtS$_2$. The role of van der Waals binding on the orbital rearrangements has been studied using electron localization function and atomic orbital projections, which explains in detail the electronic dispersion near the Fermi level. Moreover, we explain the distinct band structure alignment in momentum space but separation in real space of Tl$_2$O/PtS$_2$ heterostructure. Since 2D Tl$_2$O still awaits experimental confirmation, we calculate, for the first time, the Raman spectra of pristine Tl$_2$O and the Tl$_2$O/PtS$_2$ heterostructure and discuss peak positions corresponding to vibrational modes of the atoms. These findings offer a promising avenue to explore spin physics for potential spintronics applications via 2D heterostructures.