论文标题
紫外线的微通道检测器开发紫外线任务
Microchannel-Plate Detector Development for Ultraviolet Missions
论文作者
论文摘要
Tübingen(IAAT)的天文学和天体物理学研究所(IAAT)具有长期的经验,在开发和构建空间质量成像和光子计数微通道板(MCP)探测器方面具有敏感的紫外线波长范围。我们的目标是实现高量子效率和空间分辨率,同时保持太阳失明和低噪声特征。我们的灵活探测器设计目前是针对三个任务的特定需求量身定制的:对于ESBO DS(欧洲平流层气球天文台设计研究),我们为Studio仪器(Image of Imaging observatory的平流层紫外线演示器)提供了密封的探测器,50 cm望远镜,具有50 cm望远镜,可在37-41 km的高空中使用UV成像。在与印度天体物理学研究所合作的情况下,我们计划了一项太空任务,其中包含我们探测器的开放版本,其中包含一个方形大小的远叶型光谱成像仪器。由紫色山脉天文台领导的中国任务包括使用开放式检测器版本的多通道成像仪。我们的MCP检测器具有邻核激活的P掺杂甲氮化甲酯光电。可以将其他光电座材料(如茶硫化物或溴化钾)用作替代品。对于密封版本,光电极在MGF $ _2 $窗口上以半透明模式运行,截止波长约为118 nm。对于在此截止下需要灵敏度的任务,我们正在计划开放版本。我们采用共面跨索阳极和高级低功率读数电子设备,并带有128通道充电 - 放大器芯片。该出版物的重点是有关主要发展挑战的进展:光电参数的优化和复杂的检测器电子。
The Institute for Astronomy and Astrophysics in Tübingen (IAAT) has a long-term experience in developing and building space-qualified imaging and photon counting microchannel-plate (MCP) detectors, which are sensitive in the ultraviolet wavelength range. Our goal is to achieve high quantum efficiency and spatial resolution, while maintaining solar blindness and low-noise characteristics. Our flexible detector design is currently tailored to the specific needs of three missions: For the ESBO DS (European Stratospheric Balloon Observatory Design Study) we provide a sealed detector to the STUDIO instrument (Stratospheric Ultraviolet Demonstrator of an Imaging Observatory), a 50 cm telescope with a UV imager for operation at an altitude of 37-41 km. In collaboration with the Indian Institute of Astrophysics we plan a space mission with a CubeSat-sized far-ultraviolet spectroscopic imaging instrument, featuring an open version of our detector. A Chinese mission, led by the Purple Mountain Observatory, comprises a multi-channel imager using open and sealed detector versions. Our MCP detector has a cesium activated p-doped gallium-nitride photocathode. Other photocathode materials like cesium-telluride or potassium-bromide could be used as an alternative. For the sealed version, the photocathode is operated in semi-transparent mode on a MgF$_2$ window with a cut-off wavelength of about 118 nm. For missions requiring sensitivity below this cut-off, we are planning an open version. We employ a coplanar cross-strip anode and advanced low-power readout electronics with a 128-channel charge-amplifier chip. This publication focuses on the progress concerning the main development challenges: the optimization of the photocathode parameters and the sophisticated detector electronics.