论文标题
ICMSC:无监督域适应髋关节骨分割的域内和跨模式语义一致性
ICMSC: Intra- and Cross-modality Semantic Consistency for Unsupervised Domain Adaptation on Hip Joint Bone Segmentation
论文作者
论文摘要
用于跨模式的医学图像分割的无监督域适应性(UDA)通过域不变特征学习或图像外观翻译表现出巨大的进步。适应的功能学习通常无法检测到像素级别的域移动,并且无法在密集的语义分割任务中取得良好的结果。图像外观翻译,例如Cyclegan,将图像转化为具有良好外观的不同样式,尽管它的语义一致性几乎无法维持,并且会导致交叉模式分割不良。在本文中,我们提出了UDA的内部和跨模式语义一致性(ICMSC),我们的主要见解是,在不同样式中的合成图像的分割应该是一致的。具体而言,我们的模型由图像翻译模块和域特异性分割模块组成。图像翻译模块是标准循环gan,而分割模块包含两个域特异性分段网络。模式内语义语义一致性(IMSC)迫使以与原始输入图像相同的方式进行分割后的重建图像,而交叉模式语义一致性(CMSC)则鼓励翻译后的综合图像,以与翻译前完全相同。跨模式髋关节骨分割的全面实验结果表明,我们提出的方法的有效性,该方法的平均骰子在髋臼上的平均骰子为81.61%,股骨近端的平均骰子为88.16%,表现优于其他最先进的方法。值得注意的是,如果没有UDA,则在CT上接受髋关节骨分割的模型是不可转让的,并且几乎具有零滴度的分割。
Unsupervised domain adaptation (UDA) for cross-modality medical image segmentation has shown great progress by domain-invariant feature learning or image appearance translation. Adapted feature learning usually cannot detect domain shifts at the pixel level and is not able to achieve good results in dense semantic segmentation tasks. Image appearance translation, e.g. CycleGAN, translates images into different styles with good appearance, despite its population, its semantic consistency is hardly to maintain and results in poor cross-modality segmentation. In this paper, we propose intra- and cross-modality semantic consistency (ICMSC) for UDA and our key insight is that the segmentation of synthesised images in different styles should be consistent. Specifically, our model consists of an image translation module and a domain-specific segmentation module. The image translation module is a standard CycleGAN, while the segmentation module contains two domain-specific segmentation networks. The intra-modality semantic consistency (IMSC) forces the reconstructed image after a cycle to be segmented in the same way as the original input image, while the cross-modality semantic consistency (CMSC) encourages the synthesized images after translation to be segmented exactly the same as before translation. Comprehensive experimental results on cross-modality hip joint bone segmentation show the effectiveness of our proposed method, which achieves an average DICE of 81.61% on the acetabulum and 88.16% on the proximal femur, outperforming other state-of-the-art methods. It is worth to note that without UDA, a model trained on CT for hip joint bone segmentation is non-transferable to MRI and has almost zero-DICE segmentation.