论文标题

线性系统的概率迭代方法

Probabilistic Iterative Methods for Linear Systems

论文作者

Cockayne, Jon, Ipsen, Ilse C. F., Oates, Chris J., Reid, Tim W.

论文摘要

本文介绍了迭代方法的概率观点,用于近似解决方案$ \ mathbf {x} _* \ in \ mathbb {r}^d $的非线性线性系统$ \ mathbf {a} \ mathbf {a} \ mathbf {x}} _} _} _* = \ \ mathbf {在该方法中,$ \ mathbb {r}^d $上的标准迭代方法被提起以在概率分布的空间上作用$ \ mathcal {p}(\ Mathbb {r}^d)$。通常,迭代方法产生序列$ \ mathbf {x} _m $的近似值,将收敛到$ \ mathbf {x} _*$。相反,本文提出的迭代方法的输出是一系列概率分布$μ_m\ in \ Mathcal {p}(\ Mathbb {r}^d)$。分发输出两者都为$ \ mathbf {x} _*$提供了一个“最佳猜测”,例如,当尚未确切确定时,$ \ mathbf {x} _*$值的概率不确定性量化也提供了概率的不确定性量化。理论分析是在固定线性迭代方法的原型情况下提供的。在这种情况下,我们既表征了$μ_m$的收缩率,$ \ mathbf {x} _*$以及提供的不确定性量化的性质。我们以一个经验例证结束,该例证突出了概率迭代方法可以提供的解决方案不确定性的洞察力。

This paper presents a probabilistic perspective on iterative methods for approximating the solution $\mathbf{x}_* \in \mathbb{R}^d$ of a nonsingular linear system $\mathbf{A} \mathbf{x}_* = \mathbf{b}$. In the approach a standard iterative method on $\mathbb{R}^d$ is lifted to act on the space of probability distributions $\mathcal{P}(\mathbb{R}^d)$. Classically, an iterative method produces a sequence $\mathbf{x}_m$ of approximations that converge to $\mathbf{x}_*$. The output of the iterative methods proposed in this paper is, instead, a sequence of probability distributions $μ_m \in \mathcal{P}(\mathbb{R}^d)$. The distributional output both provides a "best guess" for $\mathbf{x}_*$, for example as the mean of $μ_m$, and also probabilistic uncertainty quantification for the value of $\mathbf{x}_*$ when it has not been exactly determined. Theoretical analysis is provided in the prototypical case of a stationary linear iterative method. In this setting we characterise both the rate of contraction of $μ_m$ to an atomic measure on $\mathbf{x}_*$ and the nature of the uncertainty quantification being provided. We conclude with an empirical illustration that highlights the insight into solution uncertainty that can be provided by probabilistic iterative methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源