论文标题
纠缠贫瘠的高原缓解措施
Entanglement Devised Barren Plateau Mitigation
论文作者
论文摘要
混合量子经典变分算法是近期设备上量子计算的最有利的实现之一,为量子标尺解决方案空间提供了经典的机器学习支持。然而,许多研究表明,该空间在量子数中增长的速度可能排除在深量子电路中学习的速度,这是一种被称为贫瘠高原的现象。在这项工作中,我们将随机的纠缠牵连为贫瘠的高原的来源,并以多体纠缠动力学来表征它们,详细说明它们的形成是系统大小,电路深度和电路连接性的函数。利用这种纠缠的理解,我们提出并展示了许多贫瘠的高原改善技术,包括:成本功能和非成本功能寄存器的初始分区,低通态电路初始化的元学习,选择性互动相互作用,纠缠互动,纠缠正规,加入langevin噪声以及旋转到优先的成本函数eeigenbases。我们发现,自动和工程的纠缠限制是高准确培训的标志,并强调,由于学习是一种迭代的组织过程,而贫瘠的高原是随机分组的结果,因此它们不一定是不可避免的或不可避免的。我们的工作既形成理论表征又形成了实用的工具箱。首先用随机纠缠来定义贫瘠的高原,然后采用这种专业知识来战略对抗它们。
Hybrid quantum-classical variational algorithms are one of the most propitious implementations of quantum computing on near-term devices, offering classical machine learning support to quantum scale solution spaces. However, numerous studies have demonstrated that the rate at which this space grows in qubit number could preclude learning in deep quantum circuits, a phenomenon known as barren plateaus. In this work, we implicate random entanglement as the source of barren plateaus and characterize them in terms of many-body entanglement dynamics, detailing their formation as a function of system size, circuit depth, and circuit connectivity. Using this comprehension of entanglement, we propose and demonstrate a number of barren plateau ameliorating techniques, including: initial partitioning of cost function and non-cost function registers, meta-learning of low-entanglement circuit initializations, selective inter-register interaction, entanglement regularization, the addition of Langevin noise, and rotation into preferred cost function eigenbases. We find that entanglement limiting, both automatic and engineered, is a hallmark of high-accuracy training, and emphasize that as learning is an iterative organization process while barren plateaus are a consequence of randomization, they are not necessarily unavoidable or inescapable. Our work forms both a theoretical characterization and a practical toolbox; first defining barren plateaus in terms of random entanglement and then employing this expertise to strategically combat them.