论文标题
软件管道量子循环程序
Software Pipelining for Quantum Loop Programs
论文作者
论文摘要
我们提出了一种在量子前循环程序上执行软件管道的方法,从而利用了迭代和跨越迭代的并行性。我们重新定义在程序优化中有用的概念,包括数组别名,指令依赖性和资源冲突,这次是对量子程序的优化。使用重新定义的概念,我们提出了一个软件,在量子循环程序中利用指令级并行的算法。然后在某些测试用例(包括QAOA等流行的应用程序)上评估优化方法,并将其与几个基线结果进行比较。评估结果表明,我们的方法优于循环优化器,仅通过减少循环程序的总深度来利用环内优化的机会,以关闭通过完整循环展开获得的最佳程序深度,同时生成尺寸较小的代码。据我们所知,这是具有循环控制流量的量子程序进行优化的第一步。
We propose a method for performing software pipelining on quantum for-loop programs, exploiting parallelism in and across iterations. We redefine concepts that are useful in program optimization, including array aliasing, instruction dependency and resource conflict, this time in optimization of quantum programs. Using the redefined concepts, we present a software pipelining algorithm exploiting instruction-level parallelism in quantum loop programs. The optimization method is then evaluated on some test cases, including popular applications like QAOA, and compared with several baseline results. The evaluation results show that our approach outperforms loop optimizers exploiting only in-loop optimization chances by reducing total depth of the loop program to close to the optimal program depth obtained by full loop unrolling, while generating much smaller code in size. This is the first step towards optimization of a quantum program with such loop control flow as far as we know.