论文标题
域壁厚和现场模型的变形
Domain wall thickness and deformations of the field model
论文作者
论文摘要
我们考虑具有真实标量场的现场理论模型中平面域壁类型(即扭结解决方案)的渐近溶液的渐近行为的变化。我们表明,当模型被有界变形函数变形时,相应的扭结溶液的指数渐近学仍然是指数级,而幂律则是幂律。但是,与壁厚相关的这些渐近药的参数可能会改变。
We consider the change in the asymptotic behavior of solutions of the type of flat domain walls (i.e., kink solutions) in field-theoretic models with a real scalar field. We show that when the model is deformed by a bounded deforming function, the exponential asymptotics of the corresponding kink solutions remain exponential, while the power-law ones remain power-law. However, the parameters of these asymptotics, which are related to the wall thickness, can change.