论文标题

嵌入破碎的嵌合图中的完整图

Embedding of Complete Graphs in Broken Chimera Graphs

论文作者

Lobe, Elisabeth, Schürmann, Lukas, Stollenwerk, Tobias

论文摘要

为了用D-Wave量子退火器解决现实世界中的组合优化问题,有必要将问题嵌入到D-Wave硬件图中,即Chimera或Pegasus。大多数艰难的现实世界问题表现出很强的连接性。对于完整图的最坏情况,存在一个有效的解决方案,用于嵌入理想的嵌合体图中。但是,由于真实机器几乎总是折断量子,因此有必要找到嵌入到损坏的硬件图中的嵌入。 我们提出了一种新的方法,即将完整图嵌入破碎的嵌合体图中。可以将此问题作为优化问题提出,更准确地说为具有其他线性约束的匹配问题。尽管通常是np-hard,但在嵌合图中的无法访问的顶点的数量中可以固定参数。我们在损坏的硬件图的各种实例上测试了我们的精确方法,这些方法都与真实硬件以及随机生成有关。对于固定的运行时,与以前的启发式方法相比,我们能够嵌入更大的完整图。作为扩展,我们开发了一种快速的启发式算法,使我们能够解决更大的实例。我们比较了启发式和精确方法的性能。

In order to solve real world combinatorial optimization problems with a D-Wave quantum annealer it is necessary to embed the problem at hand into the D-Wave hardware graph, namely Chimera or Pegasus. Most hard real world problems exhibit a strong connectivity. For the worst case scenario of a complete graph, there exists an efficient solution for the embedding into the ideal Chimera graph. However, since real machines almost always have broken qubits it is necessary to find an embedding into the broken hardware graph. We present a new approach to the problem of embedding complete graphs into broken Chimera graphs. This problem can be formulated as an optimization problem, more precisely as a matching problem with additional linear constraints. Although being NP-hard in general it is fixed parameter tractable in the number of inaccessible vertices in the Chimera graph. We tested our exact approach on various instances of broken hardware graphs, both related to real hardware as well as randomly generated. For fixed runtime, we were able to embed larger complete graphs compared to previous, heuristic approaches. As an extension, we developed a fast heuristic algorithm which enables us to solve even larger instances. We compared the performance of our heuristic and exact approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源