论文标题

Neuxus:实时脑机构相互作用的生物信号处理和分类管道

NeuXus: A Biosignal Processing and Classification Pipeline for Real-Time Brain-Computer Interaction

论文作者

Vourvopoulos, Athanasios, Legeay, Simon, Figueiredo, Patricia

论文摘要

在过去的几年中,脑部计算机界面(BCI)在人类计算机交互和互动系统领域的新兴研究领域取得了进步。这主要是由于引入了低成本的电脑电图(EEG)系统,该系统可以使BCI技术可用于非医学研究,但由于提供了信号处理和计算机的启用,因此可以通过信号处理和计算机进行计算。用户与计算机系统互动的可能性(例如,神经适应性接口)。但是,对于BCI系统,仍必须解决重大挑战,以使其成熟成有效的人类计算机交互的已建立通信媒介。主要挑战之一是将实时处理管道与便携式脑电图系统轻松整合,以供您使用。迄今为止,尽管当前开源工具提供了大量选项,但大多数工具箱主要集中在扩展处理和分类方法上,但缺乏提供易于设计但可扩展的架构的能力,以用于无处不在使用。在这里,我们呈现Neuxus,我们呈现Python中的模块化工具箱,用于实时的生物接触和管道设计。简易BCI设计和部署的管道。

In the last few years,Brain-Computer Interfaces (BCIs) have progressed as an emerging research area in the fields of human-computer interaction and interactive systems.This is primarily due to the introduction of low-cost electroencephalographic (EEG) systems that render BCI technology accessible for non-medical research but also due to the advancements of signal processing and machine learning methods.Consequently,BCIs could provide a wide new range of possibilities in the way users interact with a computer system (e.g., neuroadaptive interfaces).However,major challenges must still be addressed for BCI systems to mature into an established communication medium for effective human-computer interaction. One of the major challenges involves the easy integration of real-time processing pipelines with portable EEG systems for an out-of-the-lab use. To date, despite the amount of options current open-source tools provide, most toolboxes focus mainly in extending the processing and classification methods but lack on the ability to provide an easy-to-design yet extensible architecture for ubiquitous use.Here, we present NeuXus, a modular toolbox in Python for real-time biosignal processing and pipeline design.NeuXus is open-source and platform independent,providing high-level implementation of processing pipelines for easy BCI design and deployment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源