论文标题
兰道方程式用于自我修剪的经典和量子粒子:对暗物质的应用
Landau equation for self-gravitating classical and quantum particles: Application to dark matter
论文作者
论文摘要
我们在重力相互作用中发展了经典和量子颗粒(费米和玻色子)的动力学理论。量子颗粒的动力学理论可能在暗物质的背景下具有应用。为简单起见,我们考虑了一个无限和空间均匀的系统(或进行局部近似)和忽视集体效应。这导致在[Chavanis,Physica A 332,89(2004)]中以启发性得出的量子兰道方程。我们建立了其主要特性:保护法,$ h $ - 理论,平衡状态,放松时间,量子扩散和摩擦系数,量子rosenbluth潜力,自搭配进化,(热)浴室近似值,量子fokker-fokker-planck方程,量子king量,用于孔子粒子的量子,可以描述玻璃体粒子的概述,以描述bosonemons centeriation-landau equerne becose bane becose biste。我们讨论了我们的研究与[Levkov等人,物理学的作品的关系。莱特牧师。 121,151301(2018); Bar-or等人,Astrophys。 J. 871,28(2019)]关于模糊的暗物质光环以及玻色恒星和孤子的形成。
We develop the kinetic theory of classical and quantum particles (fermions and bosons) in gravitational interaction. The kinetic theory of quantum particles may have applications in the context of dark matter. For simplicity, we consider an infinite and spatially homogeneous system (or make a local approximation) and neglect collective effects. This leads to the quantum Landau equation derived heuristically in [Chavanis, Physica A 332, 89 (2004)]. We establish its main properties: conservation laws, $H$-theorem, equilibrium state, relaxation time, quantum diffusion and friction coefficients, quantum Rosenbluth potentials, self-consistent evolution, (thermal) bath approximation, quantum Fokker-Planck equation, quantum King model... For bosonic particles, the Landau equation can describe the process of Bose-Einstein condensation. We discuss the relation of our study with the works of [Levkov et al., Phys. Rev. Lett. 121, 151301 (2018); Bar-Or et al., Astrophys. J. 871, 28 (2019)] on fuzzy dark matter halos and the formation of Bose stars and solitons.