论文标题
在5D空间中的高进入合金中的晶界热力学:耦合隔离和无序
Decoding Grain Boundary Thermodynamics in High-Entropy Alloys in a 5D Space: Coupled Segregation and Disordering
论文作者
论文摘要
晶界(GBS)可以严重影响微观结构演化和各种材料特性。但是,由于多种元素和界面无序的隔离的复杂耦合,因此缺乏对高渗透合金(HEAS)中GB的基本了解,这可以产生新的现象并挑战古典理论。在这里,通过将大规模的原子模拟和机器学习结合,我们证明了将GB性质预测为5D空间中四个独立自由和温度的函数的可行性。随后,首次为Quinary Heas构建了与散装相图的GB对应物。数据驱动的发现进一步揭示了HEAS的新耦合分离和无序影响。值得注意的是,对大型数据集的分析发现了关键补偿温度,在该温度几乎同时消失了所有元素的隔离。虽然机器学习模型可以通过黑框方法预测GB属性,但构建了基于数据的分析模型(DBAM),以提供更多的物理学见解和更好的可传递性,并具有良好的准确性。这项研究不仅提供了一个新的范式,从而实现了5D空间中GB性质的预测,而且还可以发现HEAS中新的GB隔离现象以外的GB GB隔离模型。
Grain boundaries (GBs) can critically influence the microstructural evolution and various materials properties. However, a fundamental understanding of GBs in high-entropy alloys (HEAs) is lacking because of the complex couplings of the segregations of multiple elements and interfacial disordering, which can generate new phenomena and challenge the classical theories. Here, by combining large-scale atomistic simulations and machine learning, we demonstrate the feasibility of predicting the GB properties as functions of four independent compositional degrees of freedoms and temperature in a 5D space. Subsequently, GB counterparts to bulk phase diagrams are constructed for the first time for quinary HEAs. A data-driven discovery further reveals new coupled segregation and disordering effects in HEAs. Notably, an analysis of a large dataset discovers a critical compensation temperature at which the segregations of all elements virtually vanish simultaneously. While the machine learning model can predict GB properties via a black-box approach, a surrogate data-based analytical model (DBAM) is constructed to provide more physics insights and better transferability, with good accuracies. This study not only provides a new paradigm enabling prediction of GB properties in a 5D space, but also uncovers new GB segregation phenomena in HEAs beyond the classical GB segregation models.