论文标题
高能天体中微子风味测量的未来
The Future of High-Energy Astrophysical Neutrino Flavor Measurements
论文作者
论文摘要
We critically examine the ability of future neutrino telescopes, including Baikal-GVD, KM3NeT, P-ONE, TAMBO, and IceCube-Gen2, to determine the flavor composition of high-energy astrophysical neutrinos, ie, the relative number of $ν_e$, $ν_μ$, and $ν_τ$, in light of improving measurements of the neutrino mixing parameters.从2020年开始,我们展示了Juno,Dune和Hyper-Kamiokande进行的测量将如何影响我们确定地球上中微子振荡允许的地球风味组成区域的能力,而中微子振荡在不同的假设下是由天文学源发出的风味组成的不同假设。从2020年到2040年,推断源的风味成分的错误将从$ 40 \%$提高到小于$ 6 \%$。到2040年,假设呈腐蚀是高能天体物理中微子的主要生产机制,可以将亚显性机制限制为在99.7 \%可信度下的贡献少于20 \%。这些结论在非标准的情况下是坚固的,中微子混合是非自动的,这种情况是下一代实验的目标,尤其是IceCube-upgrade。最后,为了说明使用风味成分测试超出标准模型物理的改进,我们研究了中微子衰变的可能性,并发现到2040年,中微子望远镜测量值将能够限制较重的中微子的衰减速率至低于$ 1.8 \ $ 1.8 \ \ \ \ \ \ 5} {-5} {-5} {-5} {-5} {-5} {-5} {-5}。 (m/\ mathrm {ev})$ 〜s $^{ - 1} $,在95 \%的信誉。
We critically examine the ability of future neutrino telescopes, including Baikal-GVD, KM3NeT, P-ONE, TAMBO, and IceCube-Gen2, to determine the flavor composition of high-energy astrophysical neutrinos, ie, the relative number of $ν_e$, $ν_μ$, and $ν_τ$, in light of improving measurements of the neutrino mixing parameters. Starting in 2020, we show how measurements by JUNO, DUNE, and Hyper-Kamiokande will affect our ability to determine the regions of flavor composition at Earth that are allowed by neutrino oscillations under different assumptions of the flavor composition that is emitted by the astrophysical sources. From 2020 to 2040, the error on inferring the flavor composition at the source will improve from $> 40\%$ to less than $6\%$. By 2040, under the assumption that pion decay is the principal production mechanism of high-energy astrophysical neutrinos, a sub-dominant mechanism could be constrained to contribute less than 20\% of the flux at 99.7\% credibility. These conclusions are robust in the nonstandard scenario where neutrino mixing is non-unitary, a scenario that is the target of next-generation experiments, in particular the IceCube-Upgrade. Finally, to illustrate the improvement in using flavor composition to test beyond-the-Standard-Model physics, we examine the possibility of neutrino decay and find that, by 2040, combined neutrino telescope measurements will be able to limit the decay rate of the heavier neutrinos to below $1.8\times 10^{-5} (m/\mathrm{eV})$~s$^{-1}$, at 95\% credibility.