论文标题
通过界面模式探测带有重力波的杂种恒星
Probing hybrid stars with gravitational waves via interfacial modes
论文作者
论文摘要
核物理学中的不确定性之一是,在国家核能方程中,习惯性核物质之间的相过渡是否存在。可以通过包含诱导潮汐信息的二进制中子恒星灵感的引力波信号来探测此类功能。潮汐的动态部分是由恒星脉动模式的共振引起的,这会导致重力波相变。在本文中,我们调查了球形度界面模式($ i $ mode)的动态潮汐$ l = 2 $,这是一种非辐射模式,这是由与混合恒星内的夸克 - 戴隆相变相关的接口引起的。特别是,我们专注于具有结晶夸克物质核心和流体HADRONIC包膜的混合恒星。我们发现,这种$ i $ modes的共振频率通常从300Hz到1500Hz不等,并且随着夸克芯的剪切模量的增加,频率的增加。接下来,我们通过Fisher分析从Inspiral波形中估算出具有现有和将来的重力波事件的这种模式的可检测性。我们发现,如果Quark-Hadron相过渡发生在足够的低压下,并且夸克物质相足够大,那么GW170817和GW190425有可能检测$ i $ mode。我们还发现,第三代重力波探测器可以进一步探测具有中间过渡压力的$ i $ mode。这一发现为探测中子星中夸克核的存在打开了一个新的,有趣的方向。
One of the uncertainties in nuclear physics is whether a phase transition between hadronic nuclear matter to quark matter exists in supranuclear matter equations of state. Such a feature can be probed via gravitational-wave signals from binary neutron star inspirals that contain information of the induced tides. The dynamical part of the tides is caused by the resonance of pulsation modes of stars, which causes a shift in the gravitational-wave phase. In this paper, we investigate the dynamical tides of the interfacial mode ($i$-mode) of spherical degree $l=2$, a non-radial mode caused by an interface associated with a quark-hadron phase transition inside a hybrid star. In particular, we focus on hybrid stars with a crystalline quark matter core and a fluid hadronic envelope. We find that the resonant frequency of such $i$-modes typically ranges from 300Hz to 1500Hz, and the frequency increases as the shear modulus of the quark core increases. We next estimate the detectability of such a mode with existing and future gravitational-wave events from the inspiral waveform with a Fisher analysis. We find that GW170817 and GW190425 have the potential to detect the $i$-mode if the quark-hadron phase transition occurs at sufficiently low pressure and the shear modulus of the quark matter phase is large enough. We also find that the third-generation gravitational-wave detectors can further probe the $i$-mode with intermediate transition pressure. This finding opens a new, interesting direction for probing the existence of quark core inside a neutron star.