论文标题

K-Means内核分类器

K-Means Kernel Classifier

论文作者

Andrecut, M.

论文摘要

我们将K-均值聚类与最小二乘内核分类方法相结合。 K-均值聚类用于为每个类提取一组代表向量。最小二乘内核方法使用这些代表性向量作为分类任务的训练集。我们表明,无监督和监督的学习算法的这种组合表现良好,我们使用MNIST数据集说明了这种方法

We combine K-means clustering with the least-squares kernel classification method. K-means clustering is used to extract a set of representative vectors for each class. The least-squares kernel method uses these representative vectors as a training set for the classification task. We show that this combination of unsupervised and supervised learning algorithms performs very well, and we illustrate this approach using the MNIST dataset

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源