论文标题
使用深度学习中二进制中子恒星合并的重力波的检测和参数估计
Detection and Parameter Estimation of Gravitational Waves from Binary Neutron-Star Mergers in Real LIGO Data using Deep Learning
论文作者
论文摘要
紧凑型二进制合并对重力波的实时检测和参数估计的主要挑战之一是传统匹配过滤和贝叶斯推理方法的计算成本。特别是,将这些方法应用于重力波检测器可用的完整信号参数空间和/或实时参数估计在计算上是令人难以置信的。另一方面,快速检测和推断对于迅速随访伴随重要瞬态的电磁和星星粒子对应物,例如二元中子星和黑孔中子星级合并至关重要。训练深层神经网络以识别特定的信号并学习重力波信号及其参数之间映射的计算有效表示,可以以高灵敏度和准确性快速,可靠地进行检测和推理。在这项工作中,我们采用了一种深度学习方法来快速识别和表征来自实际Ligo数据中二进制中子星级合并的瞬态重力波信号。我们首次表明,人造神经网络可以迅速检测并表征实际Ligo数据中的二进制中性星星重力波信号,并将它们与噪声和信号区分开,从合并黑洞的二进制文件中。我们通过证明我们的深度学习框架可以正确地分类来自重力波瞬态目录GWTC-1 [Phys。修订版X 9(2019),031040]。这些结果强调了在机器学习方法中使用现实的重力波检测器数据的重要性,并代表了实现重力波的实时检测和推断的一步。
One of the key challenges of real-time detection and parameter estimation of gravitational waves from compact binary mergers is the computational cost of conventional matched-filtering and Bayesian inference approaches. In particular, the application of these methods to the full signal parameter space available to the gravitational-wave detectors, and/or real-time parameter estimation is computationally prohibitive. On the other hand, rapid detection and inference are critical for prompt follow-up of the electromagnetic and astro-particle counterparts accompanying important transients, such as binary neutron-star and black-hole neutron-star mergers. Training deep neural networks to identify specific signals and learn a computationally efficient representation of the mapping between gravitational-wave signals and their parameters allows both detection and inference to be done quickly and reliably, with high sensitivity and accuracy. In this work we apply a deep-learning approach to rapidly identify and characterize transient gravitational-wave signals from binary neutron-star mergers in real LIGO data. We show for the first time that artificial neural networks can promptly detect and characterize binary neutron star gravitational-wave signals in real LIGO data, and distinguish them from noise and signals from coalescing black-hole binaries. We illustrate this key result by demonstrating that our deep-learning framework classifies correctly all gravitational-wave events from the Gravitational-Wave Transient Catalog, GWTC-1 [Phys. Rev. X 9 (2019), 031040]. These results emphasize the importance of using realistic gravitational-wave detector data in machine learning approaches, and represent a step towards achieving real-time detection and inference of gravitational waves.