论文标题
在Si-和O-rich层中燃烧前壳前壳的三维流体动力学模拟
Three-dimensional Hydrodynamics Simulations of Precollapse Shell Burning in the Si- and O-rich Layers
论文作者
论文摘要
我们提出了在两个祖细胞中燃烧的3D流体动力学模拟,零年龄的主要序列质量为22和27 $ m _ {\ odot} $,$ \ sim $ 65和200 s,直至引力崩溃的发作。 22和27 $ m _ {\ odot} $星星是从一1D祖细胞套件中选择的。前者和后者具有扩展的Si-和O富含Si-和O-sim $ \ sim $ 10 $^9 $ cm和$ \ sim $ 5 $ \ times 10^9 $ cm的宽度。我们的3D结果表明,湍流混合发生在两个祖细胞中,其角度平均的湍流马赫数超过$ \ sim $ 0.1,最大值。我们观察到,在对流基础下发生的O和NE的情节燃烧分别增强了22和27 $ M_ \ odot $模型中的湍流混合。核合成屈服的分布与一维模拟中的分布显着不同,即在径向和角方向上分别在3D中更均匀和不均匀。通过进行频谱分析,我们研究了湍流的生长及其在对流层中材料混合的作用。我们还提出了湍流马赫数的标量球形谐波模式分析。该分析公式对超新星建模者在核心偏离超新星模拟中实施前扰动的扰动将很有帮助。根据结果,我们讨论了对扰动中微子驱动的超新星爆炸的可能发作的影响。
We present 3D hydrodynamics simulations of shell burning in two progenitors with zero-age main-sequence masses of 22 and 27 $M_{\odot}$ for $\sim$65 and 200 s up to the onset of gravitational collapse, respectively. The 22 and 27 $M_{\odot}$ stars are selected from a suite of 1D progenitors. The former and the latter have an extended Si- and O-rich layer with a width of $\sim$10$^9$ cm and $\sim$5$\times 10^9$ cm, respectively. Our 3D results show that turbulent mixing occurs in both of the progenitors with the angle-averaged turbulent Mach number exceeding $\sim$0.1 at the maximum. We observe that an episodic burning of O and Ne, which takes place underneath the convection bases, enhances the turbulent mixing in the 22 and 27 $M_\odot$ models, respectively. The distribution of nucleosynthetic yields is significantly different from that in 1D simulations, namely, in 3D more homogeneous and inhomogeneous in the radial and angular direction, respectively. By performing a spectrum analysis, we investigate the growth of turbulence and its role of material mixing in the convective layers. We also present a scalar spherical harmonics mode analysis of the turbulent Mach number. This analytical formula would be helpful for supernova modelers to implement the precollapse perturbations in core-collapse supernova simulations. Based on the results, we discuss implications for the possible onset of the perturbation-aided neutrino-driven supernova explosion.