论文标题
使用Dantzig-Wolfe分解的电力市场中凸面的计算
Computation of Convex Hull Prices in Electricity Markets with Non-Convexities using Dantzig-Wolfe Decomposition
论文作者
论文摘要
在电力市场中,非体积的存在已成为一个活跃的研究领域,已有大约二十年了。 - 在当前的边际成本定价下 - 不可避免的是确保没有市场参与者在当前的实践中通过零售付款又付出了额外的损失的问题。已经研究了替代定价规则来解决这个问题。其中,与最低升高相关的凸面船体(CH)价格引起了极大的关注。几家美国独立系统运营商(ISO)考虑了CH价格,但诉诸近似,主要是因为确定确切的CH价格在计算上具有挑战性,同时几乎没有关于价格形成理由的直觉。在本文中,我们通过依靠Dantzig-Wolfe的分解和列的生成来描述CH价格估计问题,作为一种可拖延的,高度矛盾的方法,即具有保证有限收敛性的精确,而不是近似的CH价格。此外,该方法提供了基础价格形成基本原理的直觉。风格化示例的测试床提供了CH价格形成中直觉的阐述。此外,使用现实的ISO数据集用于支持可扩展性并验证概念验证。
The presence of non-convexities in electricity markets has been an active research area for about two decades. The -- inevitable under current marginal cost pricing -- problem of guaranteeing that no market participant incurs losses in the day-ahead market is addressed in current practice through make-whole payments a.k.a. uplift. Alternative pricing rules have been studied to deal with this problem. Among them, Convex Hull (CH) prices associated with minimum uplift have attracted significant attention. Several US Independent System Operators (ISOs) have considered CH prices but resorted to approximations, mainly because determining exact CH prices is computationally challenging, while providing little intuition about the price formation rationale. In this paper, we describe the CH price estimation problem by relying on Dantzig-Wolfe decomposition and Column Generation, as a tractable, highly paralellizable, and exact method -- i.e., yielding exact, not approximate, CH prices -- with guaranteed finite convergence. Moreover, the approach provides intuition on the underlying price formation rationale. A test bed of stylized examples provide an exposition of the intuition in the CH price formation. In addition, a realistic ISO dataset is used to support scalability and validate the proof-of-concept.