论文标题

哈密​​顿的gonihedric弦理论动力学

Hamiltonian dynamics of gonihedric string theory

论文作者

Molgado, Alberto, Rojas, Efrain

论文摘要

我们以一致的方式开发了Gonihedric String理论的Ostrogradski-Hamilton框架。描述该模型的局部动作是在重新构度下不变的,取决于弦被扫除的世界表格的平均外部曲率的模量,因此我们面临着衍生物字段理论中真正的二阶。在我们的几何方法中,我们将嵌入功能视为场变量,即使该动作对这些变量的高度非线性依赖性,我们也能够完成对新兴约束的经典分析,在实现零dirac括号之后,我们能够确定该模型自由度的适当物理程度。因此,Ostrogradski-Hamilton框架是相当强大的,因为人们可能会直接且一致地恢复一些文献中报告的现有结果。此外,由于我们的几何处理,我们能够明确恢复作为副产品,用于与Gonihedric String Action相关的特定相对论点粒子极限的哈密顿式方法,即根据第一个Frenet-Serret曲率的线性性线性。

We develop in a consistent manner the Ostrogradski-Hamilton framework for gonihedric string theory. The local action describing this model, being invariant under reparametrizations, depends on the modulus of the mean extrinsic curvature of the worldsheet swept out by the string, and thus we are confronted with a genuine second-order in derivatives field theory. In our geometric approach, we consider the embedding functions as the field variables and, even though the highly non-linear dependence of the action on these variables, we are able to complete the classical analysis of the emerging constraints for which, after implementing a Dirac bracket, we are able to identify both the gauge transformations and the proper physical degrees of freedom of the model. The Ostrogradski-Hamilton framework is thus considerable robust as one may recover in a straightforward and consistent manner some existing results reported in the literature. Further, in consequence of our geometrical treatment, we are able to unambiguously recover as a by-product the Hamiltonian approach for a particular relativistic point-particle limit associated with the gonihedric string action, that is, a model linearly depending on the first Frenet-Serret curvature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源