论文标题

全球上下文网络

Global Context Networks

论文作者

Cao, Yue, Xu, Jiarui, Lin, Stephen, Wei, Fangyun, Hu, Han

论文摘要

非本地网络(NLNET)提出了一种开创性方法,用于通过将特定于特定的查询全局上下文汇总到每个查询位置,以捕获图像中的长期依赖性。但是,通过严格的经验分析,我们发现由非本地网络建模的全球环境对于不同的查询位置几乎相同。在本文中,我们利用这一发现来基于与查询无关的公式创建一个简化的网络,该公式保持了NLNET的准确性,但计算明显较少。我们进一步用两层瓶颈替换了非本地块的一层转换函数,这进一步大大降低了参数数。所得的网络元素(称为全局上下文(GC)块)以轻巧的方式有效地对全局上下文进行了建模,从而使其可以在骨干网络的多层上应用,以形成全局上下文网络(GCNET)。实验表明,GCNET在主要基准测试方面通常优于NLNET,用于各种识别任务。代码和网络配置可在https://github.com/xvjiarui/gcnet上获得。

The Non-Local Network (NLNet) presents a pioneering approach for capturing long-range dependencies within an image, via aggregating query-specific global context to each query position. However, through a rigorous empirical analysis, we have found that the global contexts modeled by the non-local network are almost the same for different query positions. In this paper, we take advantage of this finding to create a simplified network based on a query-independent formulation, which maintains the accuracy of NLNet but with significantly less computation. We further replace the one-layer transformation function of the non-local block by a two-layer bottleneck, which further reduces the parameter number considerably. The resulting network element, called the global context (GC) block, effectively models global context in a lightweight manner, allowing it to be applied at multiple layers of a backbone network to form a global context network (GCNet). Experiments show that GCNet generally outperforms NLNet on major benchmarks for various recognition tasks. The code and network configurations are available at https://github.com/xvjiarui/GCNet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源