论文标题
关于戒指的空间中的尼克迪姆集的大小
On the size of Nikodym sets in spaces over rings
论文作者
论文摘要
nikodym集$ \ MATHCAL {n} \ subseteq(\ Mathbb {z}/(n \ Mathbb {z})))^n $是一个包含$ l \ setMinus \ setMinus \ {x \ {x \ {x \} $的集合,每个$ x \ in(in(\ mathbb)in(\ mathbb {$ immath)线经过$ x $。我们证明,如果$ n $是无方形的,那么每个Nikodym集的大小至少为$ c_nn^{n-o(1)} $,其中$ c_n $仅取决于$ n $。该结果是在有限场情况下的结果的扩展。
A Nikodym set $\mathcal{N}\subseteq(\mathbb{Z}/(N\mathbb{Z}))^n$ is a set containing $L\setminus\{x\}$ for every $x\in(\mathbb{Z}/(N\mathbb{Z}))^n$, where $L$ is a line passing through $x$. We prove that if $N$ is square-free, then the size of every Nikodym set is at least $c_nN^{n-o(1)}$, where $c_n$ only depends on $n$. This result is an extension of the result in the finite field case.