论文标题

对推理应用中内存架构的能量延迟临界的基本限制

Fundamental Limits on Energy-Delay-Accuracy of In-memory Architectures in Inference Applications

论文作者

Gonugondla, Sujan Kumar, Sakr, Charbel, Dbouk, Hassan, Shanbhag, Naresh R.

论文摘要

本文对内存计算体系结构(IMC)的计算精度获得了基本限制。定义了IMC噪声模型和相关的SNR指标,并分析了它们的相互关系,以表明IMC的准确性在根本上受到Compute SNR($ \ text {snr} _ {\ text _ {\ text {a}} $的限制,其类似物的核心以及该激活和输出的最终输出sn是需要分配的,并需要分配最终的输出SNRR。 $ \ text {snr} _ {\ text {t}} \ rightarrow \ text {snr} _ {\ text {a}} $。提出了最低精度标准(MPC),以最大程度地减少ADC精度。显示三个内存计算模型 - 电荷总和(QS),当前求和(IS)和电荷再分配(QR) - 显示为最著名的IMC。开发并采用了计算模型的噪声,能量和延迟表达式,以得出IMC的SNR,ADC精度,能量和潜伏期的表达式。计算SNR表达式通过65 nm CMOS过程通过蒙特卡洛模拟验证。对于512行SRAM数组,显示出:1)IMC在其最大可实现的$ \ text {snr} _ {\ text {a}} $上具有上限,这是由于对能源,区域和电压摆动的限制,并且由于QS基于QS的架构的技术规模而减少了这种上限; 2)mpc启用$ \ text {snr} _ {\ text {t}} \ rightarrow \ text {snr} _ {\ text {a}} $,以最小的adc precision实现; 3)对于低(高)计算SNR方案,首选基于QS的(基于QR)的体系结构。

This paper obtains fundamental limits on the computational precision of in-memory computing architectures (IMCs). An IMC noise model and associated SNR metrics are defined and their interrelationships analyzed to show that the accuracy of IMCs is fundamentally limited by the compute SNR ($\text{SNR}_{\text{a}}$) of its analog core, and that activation, weight and output precision needs to be assigned appropriately for the final output SNR $\text{SNR}_{\text{T}} \rightarrow \text{SNR}_{\text{a}}$. The minimum precision criterion (MPC) is proposed to minimize the ADC precision. Three in-memory compute models - charge summing (QS), current summing (IS) and charge redistribution (QR) - are shown to underlie most known IMCs. Noise, energy and delay expressions for the compute models are developed and employed to derive expressions for the SNR, ADC precision, energy, and latency of IMCs. The compute SNR expressions are validated via Monte Carlo simulations in a 65 nm CMOS process. For a 512 row SRAM array, it is shown that: 1) IMCs have an upper bound on their maximum achievable $\text{SNR}_{\text{a}}$ due to constraints on energy, area and voltage swing, and this upper bound reduces with technology scaling for QS-based architectures; 2) MPC enables $\text{SNR}_{\text{T}} \rightarrow \text{SNR}_{\text{a}}$ to be realized with minimal ADC precision; 3) QS-based (QR-based) architectures are preferred for low (high) compute SNR scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源