论文标题

任意维度的可允许对的模量II:函子和模量

Moduli of Admissible Pairs for Arbitrary Dimension, II: Functors and Moduli

论文作者

Timofeeva, Nadezhda V.

论文摘要

可允许的对$((((\ widetilde s,\ widetilde l),\ widetilde e)$由$ n $维的投射方案组成〜$ \ $ \ widetilde s $某些班级的$ wideTilde s $ and the chum s与特殊的杂乱无常的反式屈膝$ \ widetilde l $ and sh $ { $ \ widetilde e $被考虑。可以在不含扭转的一致的连贯的纸条$ e $的过程中产生一对可接受的一对,该$ n $ n $ n $二维的代数$ s $ y $ $ s $ to to当地免费的wheaf $ \\\\\\\\\\\\\\h引入了可允许对的稳定性和可准性的概念和用于可允许对的模量函数。还检查了可接受对稳定性对经典稳定性和分辨率下连贯滑轮的可准性性的稳定性和可准性的关系。在可允许的半抗半拟合对的模量函子与Gieseker-Maruyama Moduli函数(可半固定的相干扭转式滑轮)与同样的Hilbert多项式上的型号的型号是在非差异$ n $ n $ n $ dipermensional projectival projectival projective algebraic vertam上的构建的。检查这些形态的情况表明,可允许的可允许对的模量方案$(((\ widetilde s,\ widetilde l),\ widetilde e)$是gieseker- maruyama moduli方案的同构成,​​用于对焦冰淇淋。考虑因素涉及这些模量函子及其相应模量方案的所有现有组件。 参考书目:25个项目。

Admissible pairs $((\widetilde S, \widetilde L), \widetilde E)$ consisting of an $N$-dimensional projective scheme~$\widetilde S$ of certain class with a special ample invertible sheaf $\widetilde L$ and a locally free ${\cal O}_{\widetilde S}$-sheaf $\widetilde E$ are considered. An admissible pair can be produced in the procedure of a transformation (which is called a resolution) of a torsion-free coherent sheaf $E$ on a nonsingular $N$-dimensional projective algebraic variety $S$ to a locally free sheaf $\widetilde E$ on some projective scheme $\widetilde S$. Notions of stability and semistability of admissible pairs and a moduli functor for semistable admissible pairs are introduced. Also the relation of the stability and semistability for admissible pairs to the classical stability and semistability for coherent sheaves under the resolution is examined. Morphisms between the moduli functor of admissible semistable pairs and the Gieseker--Maruyama moduli functor (of semistable coherent torsion-free sheaves) with the same Hilbert polynomial on a nonsingular $N$-dimensional projective algebraic variety are constructed. Examining these morphisms it is shown that the moduli scheme for semistable admissible pairs $((\widetilde S, \widetilde L), \widetilde E)$ is isomorphic to the Gieseker--Maruyama moduli scheme for coherent sheaves. The considerations involve all the existing components of these moduli functors and of their corresponding moduli schemes. Bibliography: 25 items.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源