论文标题

带有亚波长缝的平板的共振频率:一种傅立叶变换方法

Resonance Frequencies of a Slab with Subwavelength Slits: a Fourier-transformation Approach

论文作者

Zhou, Jiaxin, Lu, Wangtao

论文摘要

本文提出了一种新颖,严格且简单的傅立叶转化方法,以研究具有有限数量的宽度宽度$ H \ ll 1 $的完美传导板中的共鸣。由于狭缝外部的区域是可变的,因此通过傅立叶转换管理方程式,我们可以用光圈上的场导数表示外部区域中的场。接下来,在仍然可变分离的每个狭缝中,波场可以以未知傅立叶系数的可计数函数来表示为傅立叶序列。最后,通过在光圈上的匹配字段,我们建立了一个无限数量的方程式的线性系统,该方程是可计数傅立叶系数的。通过对系数矩阵的每个入口进行仔细的渐近分析,我们严格地表明,通过仅删除有限数量的行和列,所得的原理子矩阵具有对角度优势,因此无限尺寸线性系统可以将其还原为有限的尺寸线性线性系统。共振频率正是使线性系统排名缺陷的频率。反过来,这提供了一个简单,渐近的公式,描述具有准确性$ {\ cal o}(H^3 \ log H)$的共振频率。我们强调,这样的公式比所有现有结果都更准确,这是第一个准确的结果,尤其是对于我们的最佳知识而言,数字超过两个。此外,这种渐近公式严格地证实了一个事实,即共振频率的虚构部分始终为$ {\ cal o}(h)$,无论我们如何放置缝隙,只要它们被独立于宽度$ h $的距离间隔。

This paper proposes a novel, rigorous and simple Fourier-transformation approach to study resonances in a perfectly conducting slab with finite number of subwavelength slits of width $h\ll 1$. Since regions outside the slits are variable separated, by Fourier transforming the governing equation, we could express field in the outer regions in terms of field derivatives on the aperture. Next, in each slit where variable separation is still available, wave field could be expressed as a Fourier series in terms of a countable basis functions with unknown Fourier coefficients. Finally, by matching field on the aperture, we establish a linear system of infinite number of equations governing the countable Fourier coefficients. By carefully asymptotic analysis of each entry of the coefficient matrix, we rigorously show that, by removing only a finite number of rows and columns, the resulting principle sub-matrix is diagonally dominant so that the infinite dimensional linear system can be reduced to a finite dimensional linear system. Resonance frequencies are exactly those frequencies making the linear system rank-deficient. This in turn provides a simple, asymptotic formula describing resonance frequencies with accuracy ${\cal O}(h^3\log h)$. We emphasize that such a formula is more accurate than all existing results and is the first accurate result especially for slits of number more than two to our best knowledge. Moreover, this asymptotic formula rigorously confirms a fact that the imaginary part of resonance frequencies is always ${\cal O}(h)$ no matter how we place the slits as long as they are spaced by distances independent of width $h$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源