论文标题
范德华分层材料中的二维拓扑超导候选
Two-dimensional topological superconductivity candidate in van der Waals layered material
论文作者
论文摘要
二维(2D)拓扑超导体是高度期望的,因为它们不仅提供了探索新型奇异量子物理学的机会,而且还具有量子计算中的潜在应用。但是,关于2D超导体的报道很少,更不用说拓扑超导体了。在这里,我们找到了2D单层W $ _2 $ n $ _3 $,可以从其真正的范德华(Van der Waals)散装材料中剥落,其去角质能量比MOS $ _2 $要低得多,它是一种具有外来拓扑状态的拓扑金属,在不同的能量水平上。由于Van Hove的奇异性,Fermi水平附近的状态密度很高,使单层是补偿金属。此外,单层W $ _2 $ n $ _3 $被公布为超导体,具有超导过渡温度TC $ \ sim $ 22 $ 22 $ 22 k,并且基于各向异性的Migdal-Eliashberg形式主义,大约5 MEV的差距约为5 MEV,来自强度的Electron-Phonon $ Phonon-Phonon $ phoct of the $ phonon $ phonon $ phonon-PhonOn $ phot $ ploct $ phot $ phot $ phot $ phot $ phoct of $ phonon $ phot。由于具有强的电子和晶格耦合,单层在低于80 K的温度下在其正常状态下显示出非Fermi液体行为,在该温度低于80 K的情况下,特定的热量表现出t $^3 $行为,而Wiedemann-Franz Law极为违反。我们的发现不仅提供了研究2D拓扑超导体中新兴现象的平台,而且还为发现范德华材料中更多2D高温拓扑超导体打开了门。
Two-dimensional (2D) topological superconductors are highly desired because they not only offer opportunities for exploring novel exotic quantum physics, but also possesses potential applications in quantum computation. However, there are few reports on 2D superconductors, let alone topological superconductors. Here, we find a 2D monolayer W$_2$N$_3$, which can be exfoliated from its real van der Waals bulk material with much lower exfoliation energy than MoS$_2$, to be a topological metal with exotic topological states at different energy level. Due to the Van Hove singularities, the density of states near Fermi level are high, making the monolayer a compensate metal. Moreover, the monolayer W$_2$N$_3$ is unveiled to be a superconductor with the superconducting transition temperature Tc $\sim$ 22 K and a superconducting gap of about 5 meV based on the anisotropic Migdal-Eliashberg formalism, arising from the strong electron-phonon coupling around the $Γ$ point. Because of the strong electron and lattice coupling, the monolayer displays a non-Fermi liquid behavior in its normal states at temperatures lower than 80 K, where the specific heat exhibit T$^3$ behavior and the Wiedemann-Franz law dramatically violates. Our findings not only provide the platform to study the emergent phenomena in 2D topological superconductors, but also open a door to discover more 2D high-temperature topological superconductors in van der Waals materials.