论文标题

$ su(2)_l $ triplets的希格斯电势的真空稳定性条件

Vacuum Stability Conditions for Higgs Potentials with $SU(2)_L$ Triplets

论文作者

Moultaka, Gilbert, Peyranère, Michel C.

论文摘要

标量场中的树级动力学稳定性原则上可以根据四分之一多项式结构的阳性条件来表达。但是,这些条件不能总是以完全分析的分析形式施放,仅涉及耦合并在所有野外方向上有效。在本文中,我们在涉及$ SU(2)$ SU(2)$ SU(2)的三种有力动机的模型中考虑了此类形式:II型SEESAW模型,Georgi-Machacek模型和广义的两条三曲模型。对后一个模型的详细分析允许从以下条件建立完整的必要和充分界限。这些可以用作一致的现象学(树级)研究的单位性和真空结构约束。它们还提供了改善环级条件的种子,尤其是更具体的Georgi-Machacek案例的种子。顺便说一句,我们提供了各种属性的完整证明,并在四分之一的多项式上得出了一般的阳性条件,这些条件是等效的,但比文献中使用的多项式要简单得多。

Tree-level dynamical stability of scalar field potentials in renormalizable theories can in principle be expressed in terms of positivity conditions on quartic polynomial structures. However, these conditions cannot always be cast in a fully analytical resolved form, involving only the couplings and being valid for all field directions. In this paper we consider such forms in three physically motivated models involving $SU(2)$ triplet scalar fields: the Type-II seesaw model, the Georgi-Machacek model, and a generalized two-triplet model. A detailed analysis of the latter model allows to establish the full set of necessary and sufficient boundedness from below conditions. These can serve as a guide, together with unitarity and vacuum structure constraints, for consistent phenomenological (tree-level) studies. They also provide a seed for improved loop-level conditions, and encompass in particular the leading ones for the more specific Georgi-Machacek case. Incidentally, we present complete proofs of various properties and also derive general positivity conditions on quartic polynomials that are equivalent but much simpler than the ones used in the literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源