论文标题
基于容量的极地LDGM代码
Capacity-achieving Polar-based LDGM Codes
论文作者
论文摘要
在本文中,我们研究了具有稀疏发电机矩阵的代码。更具体地说,考虑了对发电机矩阵中列的重量有一定约束的低密度发电机矩阵(LDGM)代码。在本文中,首先显示出一个BMS通道W和常数s> 0时,存在一个极化内核,因此相应的极性代码是能量核能的,并且发电机矩阵(GM)的列重量通过$ n^s $从上方界定。然后,给出了基于极地代码的串联和汇率-1美元代码的一般结构,以及一种新的列拆分算法保证了通用汽车的稀疏量。更具体地说,对于任何BMS通道和任何$ε>2ε^* $,其中$ε^* \大约0.085 $,显示了一系列可容纳能力研究的代码,其中显示了所有GM列权重的上限。此外,基于第二列拆分算法的BEC和BMS通道的两个编码方案是用使用连续策略的低复杂性解码设计的。第二种分割算法允许通过保留源位观察到的位渠道的可靠性,并增加代码块长度来使用低复杂性解码器。基于串联的结构也可以应用于随机线性代码集合,以产生能量调整的代码,所有GM列的权重为$ O(\ log n)$,并且具有(大)多项式解码复杂性。
In this paper, we study codes with sparse generator matrices. More specifically, low-density generator matrix (LDGM) codes with a certain constraint on the weight of the columns in the generator matrix are considered. In this paper, it is first shown that when a BMS channel W and a constant s>0 are given, there exists a polarization kernel such that the corresponding polar code is capacity-achieving and the column weights of the generator matrix (GM) are bounded from above by $N^s$. Then, a general construction based on a concatenation of polar codes and a rate-$1$ code, and a new column-splitting algorithm that guarantees a much sparser GM, is given. More specifically, for any BMS channel and any $ε> 2ε^*$, where $ε^* \approx 0.085$, an existence of a sequence of capacity-achieving codes with all the GM column weights upper bounded by $(\log N)^{1+ε}$ is shown. Furthermore, two coding schemes for BEC and BMS channels, based on a second column-splitting algorithm, are devised with low-complexity decoding that uses successive-cancellation. The second splitting algorithm allows for the use of a low-complexity decoder by preserving the reliability of the bit-channels observed by the source bits, and by increasing the code block length. The concatenation-based construction can also be applied to the random linear code ensemble to yield capacity-achieving codes with all the GM column weights being $O(\log N)$ and with (large-degree) polynomial decoding complexity.