论文标题

$ \ mathrm {sl} _3 $ -webs在表面II:自然的热带Fock-Goncharov坐标

Tropical Fock-Goncharov coordinates for $\mathrm{SL}_3$-webs on surfaces II: naturality

论文作者

Douglas, Daniel C., Sun, Zhe

论文摘要

在同伴论文(Arxiv 2011.01768)中,我们构建了非负整数协调$φ_\ MATHSCR {t}(\ Mathscr {w} _ {3,\ hat \ hat {s}}}}} $ \ mathscr {w} _ {3,\ hat \ hat {s}} $减少的$ \ m artrm {sl} _3 $ -webs在有限型式刺穿的表面$ \ hat {s} $上,取决于理想的三角形$ \ m artsscr {我们表明,这些坐标在选择三角剖分方面是自然的,从某种意义上说,如果选择了不同的三角剖分$ \ mathscr {t}^\ prime $,则可以选择$φ_\ mathscr {t}(t}(\ mathscr {w} _ {3,\ at {3,s { $φ_ {\ MATHSCR {t}^\ prime}(\ Mathscr {w} _ {3,\ hat {s}})$是热带$ \ MATHCAL {A} $ - 坐标 - 坐标 - 坐标 - 坐标 - 坐标群集转换。因此,我们可以将网络$ \ mathscr {w} _ {3,\ hat {s}} $作为fock-goncharov-shen积极整数热带点$ \ mathcal {a} _ { \ hat {s}}}^+(\ mathbb {z}^t)$。

In a companion paper (arXiv 2011.01768), we constructed nonnegative integer coordinates $Φ_\mathscr{T}(\mathscr{W}_{3, \hat{S}}) \subset \mathbb{Z}_{\geq 0}^N$ for the collection $\mathscr{W}_{3, \hat{S}}$ of reduced $\mathrm{SL}_3$-webs on a finite-type punctured surface $\hat{S}$, depending on an ideal triangulation $\mathscr{T}$ of $\hat{S}$. We show that these coordinates are natural with respect to the choice of triangulation, in the sense that if a different triangulation $\mathscr{T}^\prime$ is chosen, then the coordinate change map relating $Φ_\mathscr{T}(\mathscr{W}_{3, \hat{S}})$ to $Φ_{\mathscr{T}^\prime}(\mathscr{W}_{3, \hat{S}})$ is a tropical $\mathcal{A}$-coordinate cluster transformation. We can therefore view the webs $\mathscr{W}_{3, \hat{S}}$ as a concrete topological model for the Fock-Goncharov-Shen positive integer tropical points $\mathcal{A}_{\mathrm{PGL}_3, \hat{S}}^+(\mathbb{Z}^t)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源