论文标题

用碳,氧,氮和硫在原星盘中追踪巨型行星的形成历史

Tracing the formation history of giant planets in protoplanetary disks with Carbon, Oxygen, Nitrogen and Sulphur

论文作者

Turrini, Diego, Schisano, Eugenio, Fonte, Sergio, Molinari, Sergio, Politi, Romolo, Fedele, Davide, Panic, Olja, Kama, Mihkel, Changeat, Quentin, Tinetti, Giovanna

论文摘要

巨型行星的迁移历史和托管磁盘的组成结构都印象深刻。最近文献中的研究调查了C和O的丰度如何限制恒星几十个AU内形成的巨型行星的形成途径。然而,新的阿尔玛观察结果表明,形成行星的区域可能延伸到数百个AU。我们通过嵌入在行星磁盘中的生长和迁移的巨型行星的N体模拟探索这些更广泛的形成环境的含义,并与原运动磁盘的组成模型相结合,其中挥发物从分子云中遗传而来,并抗折射的外部和折射系统均可校准外阳性和太阳系系统数据。我们发现C/O比提供了对经历大规模迁移的巨型行星的地层途径的有限见解。由于氮和硫可以克服这种局限性。共同使用C/N,N/O和C/O比打破了巨型行星的形成和迁移轨迹中的任何变性。由于磁盘中O,C和N的相对波动率,因此使用与各个恒星比的元素比率提供了有关巨型行星性质的其他信息。当行星金属性由固体的积聚C/N* $> $ c/o* $> $> $ n/o*(*表示这个归一化量表)时,否则N/O* $> $ C/O* $* $> $ c/n*。 S/N比为巨型行星的金属性及其固体吸收提供了额外的独立探针。

The composition of giant planets is imprinted by their migration history and the compositional structure of their hosting disks. Studies in recent literature investigate how the abundances of C and O can constrain the formation pathways of giant planets forming within few tens of au from the star. New ALMA observations, however, suggest planet-forming regions possibly extending to hundreds of au. We explore the implications of these wider formation environments through n-body simulations of growing and migrating giant planets embedded in planetesimal disks, coupled with a compositional model of the protoplanetary disk where volatiles are inherited from the molecular cloud and refractories are calibrated against extrasolar and Solar System data. We find that the C/O ratio provides limited insight on the formation pathways of giant planets that undergo large-scale migration. This limitation can be overcome thanks to nitrogen and sulphur. Jointly using the C/N, N/O and C/O ratios breaks any degeneracy in the formation and migration tracks of giant planets. The use of elemental ratios normalized to the respective stellar ratios supplies additional information on the nature of giant planets, thanks to the relative volatility of O, C and N in disks. When the planetary metallicity is dominated by the accretion of solids C/N* $>$ C/O* $>$ N/O* (* denoting this normalized scale), otherwise N/O* $>$ C/O* $>$ C/N*. The S/N ratio provides an additional independent probe into the metallicity of giant planets and their accretion of solids.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源