论文标题

SASSI-超像素化的自适应时空光谱成像

SASSI -- Super-Pixelated Adaptive Spatio-Spectral Imaging

论文作者

Saragadam, Vishwanath, DeZeeuw, Michael, Baraniuk, Richard, Veeraraghavan, Ashok, Sankaranarayanan, Aswin

论文摘要

我们介绍了一种新型的视频速度高光谱成像仪,具有高空间和时间分辨率。我们的关键假设是,在被段图像的超级像素中,像素的光谱曲线往往非常相似。因此,在其超级像素分割的图像的指导下,对高光谱场景的场景自适应空间采样能够获得高质量的重建。为了实现这一目标,我们获得了场景的RGB图像,计算其超像素,从中我们从中生成了一个空间掩码,在该位置中,我们测量了高分辨率光谱。随后,通过使用可学习的引导过滤方法融合RGB图像和光谱测量值来估计高光谱图像。由于超级像素估计步骤的计算复杂性较低,我们的设置可以捕获场景的高光谱图像,而在传统的快照高光谱摄像头上,空间很少,但具有明显更高的空间和频谱分辨率。我们通过广泛的模拟和实验室原型验证了提出的技术,该原型以$ 600 \ times 900 $像素的空间分辨率测量高光谱视频,并以10 nm的频谱分辨率在可见的波段上分辨率,并以$ 18 $ fps的价格实现帧速率。

We introduce a novel video-rate hyperspectral imager with high spatial, and temporal resolutions. Our key hypothesis is that spectral profiles of pixels in a super-pixel of an oversegmented image tend to be very similar. Hence, a scene-adaptive spatial sampling of an hyperspectral scene, guided by its super-pixel segmented image, is capable of obtaining high-quality reconstructions. To achieve this, we acquire an RGB image of the scene, compute its super-pixels, from which we generate a spatial mask of locations where we measure high-resolution spectrum. The hyperspectral image is subsequently estimated by fusing the RGB image and the spectral measurements using a learnable guided filtering approach. Due to low computational complexity of the superpixel estimation step, our setup can capture hyperspectral images of the scenes with little overhead over traditional snapshot hyperspectral cameras, but with significantly higher spatial and spectral resolutions. We validate the proposed technique with extensive simulations as well as a lab prototype that measures hyperspectral video at a spatial resolution of $600 \times 900$ pixels, at a spectral resolution of 10 nm over visible wavebands, and achieving a frame rate at $18$fps.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源