论文标题
蒙特卡洛量子计算
Monte Carlo Quantum Computing
论文作者
论文摘要
结果表明,可以在经典的计算机上有效地模拟一类无挫败感(SFF)的汉密尔顿人,因为这样的SFF汉密尔顿人对应于Gibbs波函数,其淋巴结结构可通过解决与低维构型配置子架相关的小型子系统来有效地计算出来的。进一步证明,SFF汉密尔顿人可以设计用于实施通用基态量子计算。这两个结果合并有效地解决了蒙特卡洛模拟中臭名昭著的符号问题,并证明所有有界的量子量子多项式时间算法都允许有界的概率概率多项式时间模拟。
It is shown that a class of separately frustration-free (SFF) Hamiltonians can be Monte Carlo simulated efficiently on a classical computing machine, because such an SFF Hamiltonian corresponds to a Gibbs wavefunction whose nodal structure is efficiently computable by solving a small subsystem associated with a low-dimensional configuration subspace. It is further demonstrated that SFF Hamiltonians can be designed to implement universal ground state quantum computation. The two results combined have effectively solved the notorious sign problem in Monte Carlo simulations, and proved that all bounded-error quantum polynomial time algorithms admit bounded-error probabilistic polynomial time simulations.