论文标题
私人私有多输出深度生成网络的活动日记合成方法
A Differentially Private Multi-Output Deep Generative Networks Approach For Activity Diary Synthesis
论文作者
论文摘要
在这项工作中,我们开发了一种逐个设计的生成模型,用于使用最先进的深度学习方法综合旅行人群的活动日记。这种提出的方法通过为合成旅行数据的开发和应用提供新的深入学习,同时保证合成种群所基于的样本人群的隐私保护,从而扩展了人口综合的文献。首先,我们展示了活动日记的完全去源性,以模拟地理和时间上显式活动的社会经济特征和纵向序列。其次,我们介绍了一种不同的隐私方法来控制披露调查参与者独特性的决议水平。最后,我们使用生成对抗网络(GAN)进行实验。我们评估统计分布,成对相关性并测量模拟数据集上保证的隐私水平,以确保噪声的变化。该模型的结果显示了模拟活动日记的成功,该活动由多个输出组成,包括结构化的社会经济特征和以差异性私有方式的顺序旅游活动。
In this work, we develop a privacy-by-design generative model for synthesizing the activity diary of the travel population using state-of-art deep learning approaches. This proposed approach extends literature on population synthesis by contributing novel deep learning to the development and application of synthetic travel data while guaranteeing privacy protection for members of the sample population on which the synthetic populations are based. First, we show a complete de-generalization of activity diaries to simulate the socioeconomic features and longitudinal sequences of geographically and temporally explicit activities. Second, we introduce a differential privacy approach to control the level of resolution disclosing the uniqueness of survey participants. Finally, we experiment using the Generative Adversarial Networks (GANs). We evaluate the statistical distributions, pairwise correlations and measure the level of privacy guaranteed on simulated datasets for varying noise. The results of the model show successes in simulating activity diaries composed of multiple outputs including structured socio-economic features and sequential tour activities in a differentially private manner.