论文标题
AU表达知识限制了面部表达识别的表示
AU-Expression Knowledge Constrained Representation Learning for Facial Expression Recognition
论文作者
论文摘要
自动认识到人类的情绪/表达方式是智能机器人技术的预期能力,因为它可以促进与人类的更好的沟通和合作。当前基于深度学习的算法在某些实验室控制的环境中可能会实现令人印象深刻的性能,但是它们总是无法准确地识别出不受控制的野外状况的表达式。幸运的是,面部动作单位(AU)描述了微妙的面部行为,它们可以帮助区分不确定和模棱两可的表达。在这项工作中,我们探讨了动作单元和面部表达式之间的相关性,并设计了AU表达知识的限制表示表示学习(AUE-CRL)框架,以学习无AU注释和自适应使用表示的AU表示形式,以促进面部表达识别。具体而言,它利用AU表达相关性来指导AU分类器的学习,因此可以在不产生任何AU注释的情况下获得AU表示。然后,它引入了一种知识引导的注意机制,该机制在AU表达相关性的约束下矿山矿化了有用的AU表示。通过这种方式,该框架可以捕获局部歧视性和互补特征,以增强面部表达识别的面部表示。我们对具有挑战性的不受控制的数据集进行了实验,以证明所提出的框架优于当前最新方法。可以在https://github.com/hcplab-sysu/aue-crl上获得代码和训练的模型。
Recognizing human emotion/expressions automatically is quite an expected ability for intelligent robotics, as it can promote better communication and cooperation with humans. Current deep-learning-based algorithms may achieve impressive performance in some lab-controlled environments, but they always fail to recognize the expressions accurately for the uncontrolled in-the-wild situation. Fortunately, facial action units (AU) describe subtle facial behaviors, and they can help distinguish uncertain and ambiguous expressions. In this work, we explore the correlations among the action units and facial expressions, and devise an AU-Expression Knowledge Constrained Representation Learning (AUE-CRL) framework to learn the AU representations without AU annotations and adaptively use representations to facilitate facial expression recognition. Specifically, it leverages AU-expression correlations to guide the learning of the AU classifiers, and thus it can obtain AU representations without incurring any AU annotations. Then, it introduces a knowledge-guided attention mechanism that mines useful AU representations under the constraint of AU-expression correlations. In this way, the framework can capture local discriminative and complementary features to enhance facial representation for facial expression recognition. We conduct experiments on the challenging uncontrolled datasets to demonstrate the superiority of the proposed framework over current state-of-the-art methods. Codes and trained models are available at https://github.com/HCPLab-SYSU/AUE-CRL.