论文标题

CAN IDS数据的综合指南和Road DataSet的引入

A Comprehensive Guide to CAN IDS Data & Introduction of the ROAD Dataset

论文作者

Verma, Miki E., Bridges, Robert A., Iannacone, Michael D., Hollifield, Samuel C., Moriano, Pablo, Hespeler, Steven C., Kay, Bill, Combs, Frank L.

论文摘要

尽管在现代车辆中无处不在,但控制器区域网络(罐)缺乏基本的安全性,并且很容易利用。出现了一个快速增长的罐头安全研究领域,该领域试图检测罐头的入侵。对于大多数研究人员而言,生产各种侵入的车辆罐数据是无法实现的,因为它需要昂贵的资产和专业知识。为了协助研究人员,我们介绍了现有开放式CAN Intrusion数据集的第一个综合指南,包括对每个数据集的质量分析以及对每个数据集的枚举,缺点和建议的用例。当前的公共CAN ID数据集仅限于真实制造(简单消息注入)攻击和经常在缺乏忠诚度的合成数据中进行的模拟攻击。通常,在可用数据集中未验证攻击对车辆的物理影响。只有一个数据集提供信号翻译数据,但不提供相应的原始二进制版本。总体而言,可用的数据鸽孔可以在有限的,通常不适当的数据(通常具有难以检测以至于无法真正测试方法的攻击)上进行测试,并且缺乏数据具有令人不安的结果和结果的可比性。作为我们的主要贡献,我们介绍了道路(真实的ORNL汽车测功机)可以入侵数据集,其中包括一辆车辆的罐头数据的3.5小时以上。道路包含在各种活动中记录的环境数据,以及通过多种变体和实例进行真正模糊,制造和独特的高级攻击以及模拟化装舞会攻击的攻击。为了促进需要信号翻译输入的基准测试CAN IDS方法,我们还为许多CAN捕获提供了信号时间序列格式。我们的贡献旨在促进CAN IDS字段中适当的基准测试和所需的可比性。

Although ubiquitous in modern vehicles, Controller Area Networks (CANs) lack basic security properties and are easily exploitable. A rapidly growing field of CAN security research has emerged that seeks to detect intrusions on CANs. Producing vehicular CAN data with a variety of intrusions is out of reach for most researchers as it requires expensive assets and expertise. To assist researchers, we present the first comprehensive guide to the existing open CAN intrusion datasets, including a quality analysis of each dataset and an enumeration of each's benefits, drawbacks, and suggested use case. Current public CAN IDS datasets are limited to real fabrication (simple message injection) attacks and simulated attacks often in synthetic data, which lack fidelity. In general, the physical effects of attacks on the vehicle are not verified in the available datasets. Only one dataset provides signal-translated data but not a corresponding raw binary version. Overall, the available data pigeon-holes CAN IDS works into testing on limited, often inappropriate data (usually with attacks that are too easily detectable to truly test the method), and this lack data has stymied comparability and reproducibility of results. As our primary contribution, we present the ROAD (Real ORNL Automotive Dynamometer) CAN Intrusion Dataset, consisting of over 3.5 hours of one vehicle's CAN data. ROAD contains ambient data recorded during a diverse set of activities, and attacks of increasing stealth with multiple variants and instances of real fuzzing, fabrication, and unique advanced attacks, as well as simulated masquerade attacks. To facilitate benchmarking CAN IDS methods that require signal-translated inputs, we also provide the signal time series format for many of the CAN captures. Our contributions aim to facilitate appropriate benchmarking and needed comparability in the CAN IDS field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源