论文标题

旋转链中的本地操作员纠缠

Local Operator Entanglement in Spin Chains

论文作者

Mascot, Eric, Nozaki, Masahiro, Tezuka, Masaki

论文摘要

了解局部扰动如何以及是否影响整个量子系统是理解非平衡现象(例如热化)的基本步骤。这种非平衡现象的知识适用于量子计算,因为许多量子计算机采用非平衡过程进行计算。在本文中,我们研究了带有磁场和无序的海森堡模型的一维伊斯林模型中,时间进化运算符和Pauli旋转操作员的双分和三方操作员的演变,以研究量子电路的性质。在ISING模型中,早期演化定性地遵循有效的光锥图片,并且末期值在Page的值中对随机纯状态进行了很好的描述。在具有强大障碍的海森伯格模型中,我们发现多体定位阻止信息传播和被拆卸。我们还发现了一个有效的Ising Hamiltonian,描述了大型疾病制度中海森堡模型的双方和三方操作员共同信息的时间演变。

Understanding how and whether local perturbations can affect the entire quantum system is a fundamental step in understanding non-equilibrium phenomena such as thermalization. This knowledge of non-equilibrium phenomena is applicable for quantum computation, as many quantum computers employ non-equilibrium processes for computations. In this paper, we investigate the evolution of bi- and tripartite operator mutual information of the time-evolution operator and the Pauli spin operators in the one-dimensional Ising model with magnetic field and the disordered Heisenberg model to study the properties of quantum circuits. In the Ising model, the early-time evolution qualitatively follows an effective light cone picture, and the late-time value is well described by Page's value for a random pure state. In the Heisenberg model with strong disorder, we find that many-body localization prevents the information from propagating and being delocalized. We also find an effective Ising Hamiltonian that describes the time evolution of bi- and tripartite operator mutual information for the Heisenberg model in the large disorder regime.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源