论文标题

二维MOSI2N4家族中的特殊压电,高导热率和刚度以及有希望的光催化。

Exceptional piezoelectricity, high thermal conductivity and stiffness and promising photocatalysis in two-dimensional MoSi2N4 family confirmed by first-principles

论文作者

Mortazavi, Bohayra, Javvaji, Brahmanandam, Shojaei, Fazel, Rabczuk, Timon, Shapeev, Alexander V., Zhuang, Xiaoying

论文摘要

化学蒸气沉积最近被用来制造厘米级高质量的单层MOSI2N4(科学; 2020; 369; 670)。在此激动人心的实验进步的激励下,我们在此进行了广泛的基于第一原则的模拟,以探索MA2Z4的稳定性,机械性能,晶格导热率,压电和柔韧性响应以及光催化和电子特征(M = Cr,Mo,Mo,W; a = SI,ge; a = si,ge; z; z = n,p)单层。发现所考虑的纳米片具有动力学稳定性和非常高的机械性能。此外,它们显示出从抗磁性金属到一半金属的各种电子特性以及带隙范围为0.31至2.57 eV的半导体。在所研究的纳米片中,Mosi2N4和WSI2N4单层产生适当的带边缘位置,高电子和孔的迁移率以及强大的可见光吸收,这对于光电子和光催化水的应用非常有希望。 MOSI2N4和WSI2N4单层也被预测分别显示出440和500 w/mk的极高的晶格导热率。我们第一次表明,可以使用对小型超级细胞进行训练的机器学习间势可以检查复杂结构的挠性和压电特性。作为最令人兴奋的发现,发现WSI2N4,CRSI2N4和MOSI2N4表现出最高的压电系数,表现优于所有其他已知的2D材料。我们的结果强调,MA2Z4纳米片不仅毫无疑问超过过渡金属二进制基因元素家族,而且可以与石墨烯竞争纳米电子,光电,储能/转换/转换和热管理系统的应用。

Chemical vapor deposition has been most recently employed to fabricate centimeter-scale high-quality single-layer MoSi2N4 (Science; 2020;369; 670). Motivated by this exciting experimental advance, herein we conduct extensive first-principles based simulations to explore the stability, mechanical properties, lattice thermal conductivity, piezoelectric and flexoelectric response, and photocatalytic and electronic features of MA2Z4 (M = Cr, Mo, W; A = Si, Ge; Z = N, P) monolayers. The considered nanosheets are found to exhibit dynamical stability and remarkably high mechanical properties. Moreover, they show diverse electronic properties from antiferromagnetic metal to half metal and to semiconductors with band gaps ranging from 0.31 to 2.57 eV. Among the studied nanosheets, the MoSi2N4 and WSi2N4 monolayers yield appropriate band edge positions, high electron and hole mobilities, and strong visible light absorption, highly promising for applications in optoelectronics and photocatalytic water splitting. The MoSi2N4 and WSi2N4 monolayers are also predicted to show outstandingly high lattice thermal conductivity of 440 and 500 W/mK, respectively. For the first time we show that machine learning interatomic potentials trained over small supercells can be employed to examine the flexoelectric and piezoelectric properties of complex structures. As the most exciting finding, WSi2N4, CrSi2N4 and MoSi2N4 are found to exhibit the highest piezoelectric coefficients, outperforming all other-known 2D materials. Our results highlight that MA2Z4 nanosheets not only undoubtedly outperform the transition metal dichalcogenides family but also can compete with graphene for applications in nanoelectronics, optoelectronic, energy storage/conversion and thermal management systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源