论文标题

时间序列预测的本地模型的合奏

Ensembles of Localised Models for Time Series Forecasting

论文作者

Godahewa, Rakshitha, Bandara, Kasun, Webb, Geoffrey I., Smyl, Slawek, Bergmeir, Christoph

论文摘要

由于如今通常可获得的大量数据,因此经常在时间序列(GFM)的时间序列(GFM)的培训的预测模型中,通常比在隔离系列上使用的传统单变量预测模型通常都超过了传统的单变量预测模型。由于GFM通常在所有时间序列中共享相同的参数集,因此它们通常存在不够本地化到特定系列的问题,尤其是在数据集是异质的情况下。我们研究如何与通用GFM和单变量模型一起使用结合技术来解决此问题。我们的工作系统化和比较当前的相关方法,即每个群集的聚类系列和单独的子模型,所谓的专家合奏方法,以及构建全球和本地模型的异质合奏。我们在现有的GFM本地化方法中填补了一些空白,特别是通过结合各种聚类技术,例如基于特征的聚类,基于距离的聚类和随机聚类,并将其推广到使用不同的基础GFM模型类型。然后,我们提出了一种新的方法,包括聚类合奏的新方法,在该方法中,我们通过更改簇和聚类种子的数量来训练多个串联群集的多个GFM。在我们对八个公开可用数据集的评估中,使用前馈神经网络,经常性的神经网络和汇总回归模型作为基础GFM,所提出的模型能够达到比基线GFM模型和单变量预测方法明显更高的精度。

With large quantities of data typically available nowadays, forecasting models that are trained across sets of time series, known as Global Forecasting Models (GFM), are regularly outperforming traditional univariate forecasting models that work on isolated series. As GFMs usually share the same set of parameters across all time series, they often have the problem of not being localised enough to a particular series, especially in situations where datasets are heterogeneous. We study how ensembling techniques can be used with generic GFMs and univariate models to solve this issue. Our work systematises and compares relevant current approaches, namely clustering series and training separate submodels per cluster, the so-called ensemble of specialists approach, and building heterogeneous ensembles of global and local models. We fill some gaps in the existing GFM localisation approaches, in particular by incorporating varied clustering techniques such as feature-based clustering, distance-based clustering and random clustering, and generalise them to use different underlying GFM model types. We then propose a new methodology of clustered ensembles where we train multiple GFMs on different clusters of series, obtained by changing the number of clusters and cluster seeds. Using Feed-forward Neural Networks, Recurrent Neural Networks, and Pooled Regression models as the underlying GFMs, in our evaluation on eight publicly available datasets, the proposed models are able to achieve significantly higher accuracy than baseline GFM models and univariate forecasting methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源