论文标题
无限尺寸对称组,kac-moody-virasoro代数和kac-wakimoto方程的集成性
Infinite dimensional symmetry group, Kac-Moody-Virasoro algebras and integrability of Kac-Wakimoto equation
论文作者
论文摘要
研究了(3+1)中的八阶方程,以其整合性研究。它的对称组显示为无限维度,并检查是否有类似的Virasoro结构。该方程式显示不具有Painlev $ \ acute {\ rm e} $属性。还给出了无限维对称代数的一维分类。
An eighth-order equation in (3+1)-dimension is studied for its integrability. Its symmetry group is shown to be infinite-dimensional and is checked for Virasoro like structure. The equation is shown not to have Painlev$\acute{\rm e}$ property. One and two-dimensional classifications of infinite-dimensional symmetry algebra is also given.