论文标题
neumann eigenfunctions $ c^{\ infty} $有限的平面域的非集中和限制范围
Non-concentration and restriction bounds for Neumann eigenfunctions of piecewise $C^{\infty}$ bounded planar domains
论文作者
论文摘要
令$(ω,g)$为$ \ r^2 $中的分段平滑,有界的凸域,并考虑$ l^2 $ - 正态化的neumann eigenfunctions $ ϕ_λ $,带有eigenvalue $λ^2 $^2 $和$u_λ和$u_λ:= = = = ϕ_λ_λ | _ { $ ϕ_λ $)。我们的第一个主要结果(定理\ ref {t:non-con})是一个小规模{\ em non-centration} estimate:我们证明,我们证明,对于{\ em any} $ x_0 \ in \ in \intllineΩ,$(包括边界角点)和[0,1,1) ϕ_h \ | _ {b(x_0,λ^{ - δ})\capΩ} = o(λ^{ - δ/2})。$$我们的后续结果涉及非集中估计的应用到$ l^2 $ l^2 $限制边界eigenfunctions tht undereSers cormanes cormaners ordarysers yourgansers yourgansers yourgansers的上限。特别是,在定理\ ref {dirichlet}中,我们证明,对于任何{\ em flat}边界边缘$γ$(可能包括转角点),边界限制$ u_h:= ϕ_H | _ {\ partialω} ε}),$$对于任何$ε>0。$指数$ 1/4 $都很尖锐,并且结果在$ O(λ^{1/3})$ o(λ^{1/3})$ universal $ l^2 $ - 范围内,由于tataru \ cite {ta}而绑定了Neumann eigenfunctions。 $ o(λ^{1/4})$ bund也是沿着完全对象的超曲面的Burq-gerard-tzvetkov \ cite {bgt}的著名内部$ l^2 $限制边界的边界(包括角点)的扩展。
Let $(Ω,g)$ be a piecewise-smooth, bounded convex domain in $\R^2$ and consider $L^2$-normalized Neumann eigenfunctions $ϕ_λ$ with eigenvalue $λ^2$ and $u_λ:= ϕ_λ |_{\partial Ω}$ the associated Dirichlet data (ie. boundary restriction of $ϕ_λ$). Our first main result (Theorem \ref{T:non-con}) is a small-scale {\em non-concentration} estimate: We prove that for {\em any} $x_0 \in \overlineΩ,$ (including boundary corner points) and any $δ\in [0,1),$ $$ \| ϕ_h \|_{B(x_0,λ^{-δ})\cap Ω} = O(λ^{-δ/2}).$$ Our subsequent results involve applications of the nonconcentration estimate to upper bounds for $L^2$ restrictions of boundary eigenfunctions that are valid up to boundary corners. In particular, in Theorem \ref{dirichlet} we prove that for any {\em flat} boundary edge $Γ$ (possibly including corner points), the boundary restrictions $u_h:= ϕ_h |_{\partial Ω}$ satisfy the bounds $$ \|u_λ \|_{L^2(Γ)} = O_ε(λ^{1/4 + ε}),$$ for any $ε>0.$ The exponent $1/4$ is sharp and the result improves on the $O(λ^{1/3})$ universal $L^2$-restriction bound for Neumann eigenfunctions due to Tataru \cite{Ta}. The $O(λ^{1/4})$ -bound is also an extension to the boundary (including corner points) of well-known interior $L^2$ restriction bounds of Burq-Gerard-Tzvetkov \cite{BGT} along totally-geodesic hypersurfaces.