论文标题

4d Higgsed网络演算和椭圆形昏暗代数

4d higgsed network calculus and elliptic DIM algebra

论文作者

Ghoneim, Mohamed, Kozçaz, Can, Kurşun, Kerem, Zenkevich, Yegor

论文摘要

某些类别的超对称仪表具有由丁 - iohara-miki(DIM)代数描述的大型隐藏的非扰动对称性,可用于计算其分区功能和相关因子非常有效。我们提升了为研究3D线性箭量规定理论的霍明型块开发的昏暗的代数方法。我们采用代数结构,其中基础三角昏暗的代数椭圆形变形,并且是由拓扑弦理论促进的替代几何方法。我们证明了这两种方法的等效性,并以此为动机,证明了椭圆形的代数对三角昏暗代数的直接总和是同构和额外的海森伯格代数。

Supersymmetric gauge theories of certain class possess a large hidden nonperturbative symmetry described by the Ding-Iohara-Miki (DIM) algebra which can be used to compute their partition functions and correlators very efficiently. We lift the DIM-algebraic approach developed to study holomorphic blocks of 3d linear quiver gauge theories one dimension higher. We employ an algebraic construction in which the underlying trigonometric DIM algebra is elliptically deformed, and an alternative geometric approach motivated by topological string theory. We demonstrate the equivalence of these two methods, and motivated by this, prove that elliptic DIM algebra is isomorphic to the direct sum of a trigonometric DIM algebra and an additional Heisenberg algebra.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源