论文标题

群体素,几何诱导和Gelfand模型

Groupoids, Geometric Induction and Gelfand Models

论文作者

Aubert, Anne-Marie, Behn, Antonio, Soto-Andrade, Jorge

论文摘要

在本文中,我们介绍了一个(有限)组$ g $的子组$ h $的经典表示形式的固有版本,此处称为{\ em几何诱导},它与任何传递性,不一定是$ g $ g $ -set $ x $相关联的$ x $,并与$ g $ g $ g $ g $ a $ a $ a $ a $ a $ a的任何表示形式相关联。我们表明,在$ g $是对称组或等级$ 2 $的投影性的一般线性群体的情况下,适用于合适的$ g $ - set $ x $的一维字符的几何感应,可为$ g $ $ g $。

In this paper we introduce an intrinsic version of the classical induction of representations for a subgroup $H$ of a (finite) group $G$, called here {\em geometric induction}, which associates to any, not necessarily transitive, $G$-set $X$ and any representation of the action groupoid $A(G,X)$ associated to $G$ and $X$, a representation of the group $G$. We show that geometric induction, applied to one dimensional characters of the action groupoid of a suitable $G$-set $X$ affords a Gelfand Model for $G$ in the case where $G$ is either the symmetric group or the projective general linear group of rank $2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源