论文标题

基于课程的深钢筋学习量子控制

Curriculum-based Deep Reinforcement Learning for Quantum Control

论文作者

Ma, Hailan, Dong, Daoyi, Ding, Steven X., Chen, Chunlin

论文摘要

深厚的强化学习被认为是一种有效的技术,可以为不同的复杂系统设计最佳策略,而无需事先了解控制格局。为了实现量子系统的快速和精确的控制,我们通过构建由忠实阈值定义的一组中间任务组成的课程来提出一种新颖的深入增强学习方法。课程之间的任务可以使用经验知识静态确定,也可以随着学习过程的自适应生成。通过在两个连续任务之间转移知识并根据其困难进行测序任务,建议的基于课程的深度加固学习(CDRL)方法使代理商可以在早期阶段专注于简单的任务,然后进入困难的任务,并最终接近最终任务。封闭量子系统和开放量子系统上的数值模拟表明,所提出的方法为量子系统提供了改进的控制性能,还提供了一种有效的方法来识别较少控制脉冲的最佳策略。

Deep reinforcement learning has been recognized as an efficient technique to design optimal strategies for different complex systems without prior knowledge of the control landscape. To achieve a fast and precise control for quantum systems, we propose a novel deep reinforcement learning approach by constructing a curriculum consisting of a set of intermediate tasks defined by a fidelity threshold. Tasks among a curriculum can be statically determined using empirical knowledge or adaptively generated with the learning process. By transferring knowledge between two successive tasks and sequencing tasks according to their difficulties, the proposed curriculum-based deep reinforcement learning (CDRL) method enables the agent to focus on easy tasks in the early stage, then move onto difficult tasks, and eventually approaches the final task. Numerical simulations on closed quantum systems and open quantum systems demonstrate that the proposed method exhibits improved control performance for quantum systems and also provides an efficient way to identify optimal strategies with fewer control pulses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源