论文标题

贝叶斯联邦学习通过无线网络

Bayesian Federated Learning over Wireless Networks

论文作者

Lee, Seunghoon, Park, Chanho, Hong, Song-Nam, Eldar, Yonina C., Lee, Namyoon

论文摘要

联合学习是使用存储在本地设备中的异质数据集的一种隐私和分布式培训方法。通过无线网络的联合学习需要在服务器上汇总本地计算的梯度,而移动设备在该服务器上向异质通信链接发送统计上不同的梯度信息。本文提出了一种贝叶斯联合学习(BFL)算法,以最佳地汇总异质量化梯度信息,以最大程度地减少于点误差(MSE)。 BFL的想法是通过共同利用i)局部梯度的先前分布,ii)梯度量化函数以及iii)通道分布来汇总服务器上的一位量化局部梯度。随着移动设备数量的增加,实施BFL需要高通信和计算成本。为了应对这一挑战,我们还提出了一种称为可伸BFL(SBFL)的有效修改的BFL算法。在SBFL中,我们假设局部梯度上的简化分布。每个移动设备都将其一位量化的本地梯度以及两个代表此分布的标量参数一起发送。然后,服务器汇总了嘈杂和褪色的量化梯度,以最大程度地减少MSE。我们为一类非convex损耗函数提供了SBFL的收敛分析。我们的分析阐明了通信通道和梯度先验的参数如何影响收敛。从模拟中,我们证明,使用MNIST数据集训练和测试神经网络时,SBFL的表现大大优于常规符号随机梯度下降算法。

Federated learning is a privacy-preserving and distributed training method using heterogeneous data sets stored at local devices. Federated learning over wireless networks requires aggregating locally computed gradients at a server where the mobile devices send statistically distinct gradient information over heterogenous communication links. This paper proposes a Bayesian federated learning (BFL) algorithm to aggregate the heterogeneous quantized gradient information optimally in the sense of minimizing the mean-squared error (MSE). The idea of BFL is to aggregate the one-bit quantized local gradients at the server by jointly exploiting i) the prior distributions of the local gradients, ii) the gradient quantizer function, and iii) channel distributions. Implementing BFL requires high communication and computational costs as the number of mobile devices increases. To address this challenge, we also present an efficient modified BFL algorithm called scalable-BFL (SBFL). In SBFL, we assume a simplified distribution on the local gradient. Each mobile device sends its one-bit quantized local gradient together with two scalar parameters representing this distribution. The server then aggregates the noisy and faded quantized gradients to minimize the MSE. We provide a convergence analysis of SBFL for a class of non-convex loss functions. Our analysis elucidates how the parameters of communication channels and the gradient priors affect convergence. From simulations, we demonstrate that SBFL considerably outperforms the conventional sign stochastic gradient descent algorithm when training and testing neural networks using MNIST data sets over heterogeneous wireless networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源