论文标题
在面向任务的对话系统中持续学习
Continual Learning in Task-Oriented Dialogue Systems
论文作者
论文摘要
在以任务为导向的对话系统中持续学习可以使我们能够通过时间添加新的领域和功能,而不会产生整个系统再培训的高成本。在本文中,我们为以任务为导向的对话系统提供了一个持续的学习基准,该系统具有37个领域,可以在四个设置中连续学习,例如意图识别,状态跟踪,自然语言生成和端到端。此外,我们实施和比较了多个现有的持续学习基线,并提出了一种基于剩余适配器的简单而有效的架构方法。我们的实验表明,所提出的建筑方法和简单的基于重播的策略的表现相当出色,但它们均与多任务学习基线相比,在所有数据下立即显示,这表明在以任务为导向的对话系统中持续学习是一项挑战的任务。此外,我们在参数使用方面和内存大小方面揭示了不同的持续学习方法之间的几个权衡,这在设计面向任务的对话系统的设计中很重要。拟议的基准与多个基线一起发布,以促进该方向的更多研究。
Continual learning in task-oriented dialogue systems can allow us to add new domains and functionalities through time without incurring the high cost of a whole system retraining. In this paper, we propose a continual learning benchmark for task-oriented dialogue systems with 37 domains to be learned continuously in four settings, such as intent recognition, state tracking, natural language generation, and end-to-end. Moreover, we implement and compare multiple existing continual learning baselines, and we propose a simple yet effective architectural method based on residual adapters. Our experiments demonstrate that the proposed architectural method and a simple replay-based strategy perform comparably well but they both achieve inferior performance to the multi-task learning baseline, in where all the data are shown at once, showing that continual learning in task-oriented dialogue systems is a challenging task. Furthermore, we reveal several trade-offs between different continual learning methods in term of parameter usage and memory size, which are important in the design of a task-oriented dialogue system. The proposed benchmark is released together with several baselines to promote more research in this direction.