论文标题

利用非杂化病变中的共同知识进行注释效率的covid-19 CT肺部感染分段

Exploiting Shared Knowledge from Non-COVID Lesions for Annotation-Efficient COVID-19 CT Lung Infection Segmentation

论文作者

Zhang, Yichi, Liao, Qingcheng, Yuan, Lin, Zhu, He, Xing, Jiezhen, Zhang, Jicong

论文摘要

新型冠状病毒病(Covid-19)是一种高度传染性的病毒,已经在世界各地传播,对所有国家构成了极为严重的威胁。来自计算机断层扫描(CT)的自动肺部感染分割在COVID-19的定量分析中起重要作用。但是,主要的挑战在于注释的COVID-19数据集的不足。当前,有几个公共非循环肺部病变细分数据集,为将有用信息推广到相关的COVID-19分段任务提供了潜力。在本文中,我们提出了一种新颖的关系驱动的协作学习模型,以利用从非循环病变中的共同知识进行注释效率的COVID-19 CT肺部感染细分。该模型由一个普通编码器组成,该通用编码器基于多个非卵巢病变捕获一般的肺部病变特征,以及一个目标编码器,以基于COVID-19的感染重点关注特定于任务的特征。从两个并行编码器中提取的特征是为后续解码器串联的。我们制定了一个协作学习计划,以使给定输入的特征级别关系一致性正常,并鼓励模型学习Covid-19感染的更多一般性和歧视性表示。广泛的实验表明,经过有限的COVID-19数据训练,利用非杂化病变的共同知识可以进一步提高最先进的性能,而骰子相似性系数高达3.0%,在归一化表面骰子中进行了4.2%。我们提出的方法促进了对COVID-19感染分割的注释有效的深度学习的新见解,并说明了在没有足够高质量注释的情况下全球与Covid-19的全球斗争中,现实世界应用的强大潜力。

The novel Coronavirus disease (COVID-19) is a highly contagious virus and has spread all over the world, posing an extremely serious threat to all countries. Automatic lung infection segmentation from computed tomography (CT) plays an important role in the quantitative analysis of COVID-19. However, the major challenge lies in the inadequacy of annotated COVID-19 datasets. Currently, there are several public non-COVID lung lesion segmentation datasets, providing the potential for generalizing useful information to the related COVID-19 segmentation task. In this paper, we propose a novel relation-driven collaborative learning model to exploit shared knowledge from non-COVID lesions for annotation-efficient COVID-19 CT lung infection segmentation. The model consists of a general encoder to capture general lung lesion features based on multiple non-COVID lesions, and a target encoder to focus on task-specific features based on COVID-19 infections. Features extracted from the two parallel encoders are concatenated for the subsequent decoder part. We develop a collaborative learning scheme to regularize feature-level relation consistency of given input and encourage the model to learn more general and discriminative representation of COVID-19 infections. Extensive experiments demonstrate that trained with limited COVID-19 data, exploiting shared knowledge from non-COVID lesions can further improve state-of-the-art performance with up to 3.0% in dice similarity coefficient and 4.2% in normalized surface dice. Our proposed method promotes new insights into annotation-efficient deep learning for COVID-19 infection segmentation and illustrates strong potential for real-world applications in the global fight against COVID-19 in the absence of sufficient high-quality annotations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源